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INTRODUCTION 

Any abrupt change in diet may induce unexpected consequences. 

Never yet in nutrition have we been able to isolate one nutrient from 

all the others in its metabolic effects. Neither a significant in

crease nor decrease in intake of a' single nutrient will have uncompli

cated, totally predictable effects. An increased intake of one nutrient 

will influence the requirement for other selected nutrients. The host of 

interrelationships among nutrients complicates attempts to ameliorate a 

single physical need by a unique dietary alteration. Such is the case 

with fat-altered diets. 

Since 1952 there have been repeated reports that dietary polyun

saturated fat (PUFA) is associated with lowered serum cholesterol 

(Kinsell et al. 1952, Ahrens et 1954, Hegsted et 1965, Grundy 

and Ahrens 1970). These reports held great promise for a dietary means 

of protection from cardiovascular heart disease, one of the major medical 

concerns of developed nations. Prompted by these results, the American 

Heart Association and the U.S. Senate Select Committee on Nutrition and 

Human Needs have recommended that we increase intake of PUFA. Recent 

dietary guidelines issued by the USDA and DHEW suggest reduction of 

saturated fat but not an increase in PUFA (U.S.D.A. and D.H.E.W. 1980). 

Many have been convinced to alter their diets radically. Consumption of 

PUFA in the U.S. has risen steadily (Rizek et al. 1974). This dietary 

change has occurred, however, without regard to the other effects 

such a diet may produce. The benefits of a high PUFA diet are 

not entirely clear, for there are conflicting results. Not all re
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searchers have been able to reduce serum cholesterol by raising dietary 

PUFA (Nichols et 1976) . Jackson et al. (1978) have provided a comprehensive 

review of the contradictory evidence and some reasons for the diverse 

results. 

Fear of cardiovascular heart disease is not the only impetus for 

changes towards diets relatively rich in PUFA. Patients maintained on 

long-term total parenteral nutrition (XPN) must receive essential fatty 

acids (EFA) in order to avoid manifestations of deficiency, and the lipid 

emulsions commonly used in such circumstances have P/S ratios of 7.3 and 

over (Silberman et 1977). Recent observations on cystic fibrosis 

patients suggest that at least part of the disease is due to an error in 

EFA metabolism (Campbell et al,. 1976, Chase 1976). Rosenlund et al. 

(1977) and Elliott (1976) have fed increased levels of maize oil and 

soybean oil, respectively, with noticeable improvement in cystic 

fibrosis patients. 

Unfortunately, there is mounting evidence of danger in high PUFA 

diets. Linoleic acid appears to accelerate tumor growth (Rao and 

Abraham 1976, Hopkins and West 1977b). Pinckney (1973) observed pre

mature skin aging and a ruptured spleen from excessive Ingestion of 

PUFA. Heng (1977) showed alteration in the structure of cardiac muscle 

and in its distensibility related to unsaturation of dietary fat, while 

others have observed increased incidence of respiratory distress in 

laboratory animals on high PUFA diets (Richards 1979). Rats aged 6 to 

9 months fed mixed fats performed significantly better in a discrimina

tion learning situation than rats fed 20% safflower oil. Moreover, the 

latter rats appeared to have a reduced lifespan (Harman et 1976). 
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Higgins (1979) reported decreased growth in young rats fed 38% of 

calories as safflower oil. Furthermore, it is believed that increasing 

the PUFA intake increases the dietary requirement for vitamin E (Horwitt 

1962, Jager 1972, Harris and Embree 1963). 

Dietary lipid is known to alter tissue lipid composition. High 

PUFA intake enriches tissues with PUFA (Danon et al. 1975, Carroll 1965). 

The consequences whether beneficial or dangerous are not yet fully 

known. Membrane structure and functional characteristics will cer

tainly be affected, for polyunsaturated fatty acids (PUFAs) are vital 

components of mammalian membranes (Metzler 1977). 

A major use of PUFA in the body is to serve as substrate for 

prostaglandin (PG) synthesis. The PGs have been observed in nearly 

all tissues and appear to be potent local regulators of varied func

tions: vasoconstriction, vasodilation, smooth muscle contraction and 

relaxation, bronchial dilation and constriction, platelet aggregation, 

lipolysis, reactions mediated by level of cyclic AMP, neural transmission, 

inflammation, intraocular pressure (Karim and Hillier 1972) . There are a host 

of different PGs, all related in structure, being derived from the 20-carbon 

prostanoic acid skeleton but differing in double bond placement, side-

chain substituents, and placement of hydroxyl and keto groups. These 

varying PGs frequently have opposing functions (Mathe et al. 1977). It is 

probably the balance among varying PG forms that allows fine, immediate 

control of localized events. Researchers have recently established that 

dietary intake of PUFA is associated with altered synthesis of PGs 

(Mathias and Dupont 1979). Whether the change in prostaglandin syn

thetic potential is the mechanism whereby dietary PUFA exerts its 
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influence is not fully established but currently is an accepted, 

working hypothesis. 

The purpose of this work is to explore the Interrelationships of 

high PUFA diets and dietary a-tocopherol, the most common form of 

vitamin E. We propose to test the hypothesis that (1) increased in

takes of PUFA may produce a secondary vitamin E deficiency and, as a 

corollary, (2) that increasing intakes of crtocopherol may ameliorate 

certain of the ill effects of high PUFA diets, specifically by altering 

the tissue level of PG precursor fatty acids and by altering tissue PG 

synthetic rate. 
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REVIEW OF LITERATURE 

Fatty Acid Composition 

Livestock producers were probably the first to observe that diet 

might influence the lipid composition of animal tissues. While pigs 

fed starchy cereals had hard adipose, those fed peanut-meal had soft 

adipose tissue (Holman 1964). When controlled nutritional studies 

regarding fat source became a reality with advancing technology, it 

was recognized that dietary fatty acid patterns could be reflected in 

tissue fatty acid patterns. Early studies focused on serum and adipose. 

Hirsch et al. (1960) reported that serum lipids in humans showed an 

increased linoleate content in response to a corn oil diet. They also 

observed an effect in adipose tissue but believed it to be a slow, 

gradual response. Repeated observations by many researchers confirmed 

the effect of dietary lipid on serum and adipose. Indeed, the fatty 

acid composition of serum and adipose was strongly representative of 

dietary lipid in laboratory animals (Leat 1963, Holman 1964, Carroll 

1965) and in humans (Dayton et 1966). 

Veerkamp £t (1962) made extensive analyses of the fatty acids 

of lipid fractions of various tissues from several species. Dietary 

variables were not included in the experiment. The rats were given a 

commercial diet which was 6% fat (51% linoleic acid). The reported 

fatty acid patterns of neutral lipids in depot fat, liver, kidney, and 

lung can serve as useful references when considering the effect of 

varying dietary fat. 
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As research results have accumulated, we have found comparisons of 

corn oil, safflower oil, soybean oil, beef tallow, lard, cod liver oil, 

and butter fat in respect to their influence on serum and adipose fatty 

acid compositions. Metabolic studies in adolescent boys comparing 

safflower oil and beef tallow revealed statistically significant dif

ferences in C16:l, C18:l, and C18:2io6 in serum lipids. When comparing 

corn oil and butter oil, researchers again found significant differences 

in serum oleate and linoleate. Corn oil and safflower oil, rich sources 

of linoleate, were both capable of elevating serum linoleate (Kies 

et al. 1978). 

Another investigator compared safflower oil and coconut oil com

bined to produce varying P/S ratios and found that adipose tissue pre

dicted the lipid composition of diet (Higgins 1979). A five-year study 

in elderly men compared the response of serum and adipose to a conven

tional diet and a diet in which unsaturated fat was substituted for 

saturated fat. Both diets contained fat at 40% of calories, which ap

proximates current American and European intakes (Dayton et 1966). 

On the high polyunsaturated fat diet, linoleic acid increased signifi

cantly in all serum lipid fractions. The level of arachidonic acid 

rose slightly in triglycerides but was unchanged in other fractions, 

while palmitate and stearate decreased in cholesteryl esters, phospho

lipids, and triglycerides. The linoleic acid content of adipose rose 

from 11% of total fatty acids at the initiation of the experiment to 

32% at the termination five years later. 

So well established was the correlation of dietary and adipose 

fatty acid patterns that Beynan et al. (1980) proposed a direct 
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mathematical relationship between them. In fact, they asserted that 

measurement of the fatty acids of adipose may be used to identify whether 

or not individuals are faithfully adhering to recommended diets. 

Research has also been directed at other tissues and organs to 

elucidate the role of dietary fat in altering their composition. Carroll 

noted in a review paper (1965) that many studies of serum and liver had 

been conducted. Today we may add that there is also information on 

brain, kidney, heart, skeletal muscle, adrenal gland, erythrocytes, 

platelets, and retina. Only a few investigators have explored fatty 

acid composition of lung. Liver, serum, and adipose, due to their 

pivotal position in lipid transport, clearance, synthesis, and storage 

reflected, as expected, the influence of dietary lipid. Brain, 

although the contribution of dietary fat thereto was limited, also 

showed significant changes (Carroll 1965). After feeding cod liver oil 

to rats, Rieckehoff et al. (1949) found that the lipid of the heart was 

similar in fatty acid composition to the oil fed. In rat muscle and 

liver dietary corn oil produced increased levels of linoleate, while 

a beef fat diet produced increased levels of oleate (Gurr et al. 1976). 

In a study of the effect of arachidonate and dihomo-Y-linolenate on the 

fatty acid composition of plasma and tissues, researchers concluded 

that the arachidonate content of tissues could be substantially in

creased by a high dietary intake of arachidonate. The same phenomenon 

occurred with dihomo-Y-linolenate (Danon et £l. 1975). As the experi

ment was designed, the animals ate a commercial laboratory chow ad 

libitum and were given 300 mg ethyl arachidonate daily (or ethyl 

dihomo-Y-linolenate) by stomach tube. Arachidonate is generally present 
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in the diet in small amounts. Thus, the rats' ingestion of 300 mg 

daily, which is approximately 5% of calories, while appearing on one 

hand to be a high arachidonate intake, is on the other hand quite 

modest by comparison to linoleate intakes at 10-16% of calories on 

vegetable oil diets. Enrichment of all major lipid classes occurred — 

triglycerides, cholesteryl esters, phospholipids, and free fatty acids. 

Further studies of the metabolism of dihomo-Y-linolenate showed that oral 

administration of this fatty acid resulted in its incorporation in tissue 

lipids (Hassam and Crawford 1978b). 

The fatty acid pattern of the triglyceride fraction represents 

dietary fat to the greatest extent, while the phospholipid fraction is 

least variable (Higgins 1979). Cholesteryl ester fatty acid response 

to diet varied with the tissue; hepatic CE was more sensitive to dietary 

fatty acid composition than was plasma CE. Pulmonary nonphospholipid 

fraction was more responsive to dietary fat alterations than were cardiac 

and renal nonphospholipid fractions. Pulmonary phospholipid P/S ratio 

varied from 0.41 to 0.45 when dietary P/S ratio was varied from 0.1 to 

8.6. Thus, the phospholipid fraction of lung hardly altered despite 

major dietary fat alterations (Higgins 1979). Fine et al. (1980) con

firmed the fact that platelet phospholipid fatty acid composition was 

unaffected by P/S ratios from 0.4 to 5.5. Those tissues containing 

much triglyceride will exhibit the greatest compositional response 

to dietary fat profile. 

Research directed at refining our perceptions has produced evidence 

that dietary fatty acids have not only macro but also micro effects 

on tissue lipid composition. Using mice, Tsang et al. (1980) found 
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lymphocyte lipids reflected the FA composition of the diet after only 

two weeks. Not only organs and cells but also subcellular organelles 

may show lipid changes. Witting et al. (1961) showed the fatty acid 

composition of rat hepatic mitochondrial lipids was readily altered by 

dietary fatty acid variations. Depending on diet, fatty acids could 

readily displace one another and accumulate in brain mitochondria, erythro

cytes, and heart tissue (Century et al. 1963). Hepatocyte plasma 

membranes contained elevated linoleate and arachidonate when the diet 

was high in PUFA (Hopkins and West 1977a). 

Pulmonary fatty acid composition 

Pulmonary fatty acids have had less attention than those of other 

organs and tissues. It is unfortunate that investigators of lipid 

metabolism have so often overlooked the lung while focusing on other 

organs. Although it is true that the total lipid content of lung tis

sue is low, nevertheless pulmonary lipid metabolism is highly active. 

The lung engages in vital lipogenesis for the surfactant; free fatty 

acids are rapidly esterified; fatty acid oxidation is swift in lung. 

The lung has been called "a titan of lipid metabolism" (Tierney 1974), 

In fact, due to a limited use of carbohydrate by adult lung, lipids may 

be the major source of acetyl-CoA in pulmonary mitochondria. 

Much research on lung lipids has dealt with elucidation of the 

composition and chemistry of pulmonary surfactant. The pressure on 

alveoli is so great that the air sacs would collapse were it not for the 

presence of surface-active materials that reduce alveolar interfacial 

tension. Frosolono et al. (1970) reported successful isolation and 
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characterization of the surfactant fraction of lung. Identified as 

dipalmitoyl-phosphatidylcholine (DPPC), it was shown to consist of 

68% palmitate, 7% palmitoleate, 7% stearate, 8% linoleate, and 8% 

an unidentified fatty acid. 

Observations of the unusually high pulmonary content of saturated 

16- and 18-carbon fatty acids compared to other mammalian constituents 

led to further purifications and analyses of the surface-active material. 

King (1974) reported the composition to be 50% fully saturated phosphatidyl 

choline (primarily palmitate), 25% monoenoic phosphatidylcholine, and 

small amounts of other phospholipids, proteins, phosphatides, and 

cholesterol. The saturated phosphatidylcholine lowers alveolar inter-

facial tension, while the monoenoic phosphatidylcholine and cholesterol 

provide increased molecular mobility and adsorption to the alveolar 

interface (King 1974). Repeated analyses of fatty acid composition of 

pulmonary surfactant showed very high palmitic acid content (Sanders 

and Longmore 1975). Therefore, when total lung lipids were analyzed, 

a striking feature was the contribution of surfactant and the consequent 

high proportion of saturated fatty acids (Kehrer and Autor 1978, 

Donovan al, 1977) . 

Essential Fatty Acids 

Of particular interest in the study of dietary fat alterations and 

their effects on the body has been the role of essential fatty acids 

(EFAs) and the occurrence of essential fatty acid deficiency. Burr and 

Burr (1929) first recognized the essentiality of certain fats in the 
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diet of laboratory rats. The deficiency symptoms they observed were 

scaly skin lesions, necrosis of the tail, impaired growth, and renal 

degeneration. Further studies identified linoleic acid (C18:2ti6) as 

the critical dietary component. Over the years there has been in

decision among nutritionists as to the precise fatty acids to be 

considered dietary essentials. Of linoleic acid, there is no doubt. 

In 1974 the National Research Council identified arachidonic acid as es

sential. In 1980 the National Research Council identified linoleate 

as the primary dietary EFA and arachidonate as a minor contributor. Very 

little arachidonate occurs in the average diet (Brignoli et al. 1976, 

Weihrauch et al. 1977); and humans, rats, and other species are capable 

of synthesizing arachidonate from linoleate. Until recently, it was 

believed that the domestic cat lacked the A-6 desaturase enzyme neces

sary for arachidonate synthesis (Rivers and Hassam 1975). However, 

Stephan and Hayes (1978) presented evidence that even the cat can thrive 

on a diet whose only fat source is linoleate. 

The desaturase enzyme system appears to be very active under "normal" 

conditions, although many factors influencing its activity have been 

identified — (1) insulin, (2) dietary protein, (3) dietary carbohydrate, 

(4) quantity of endoplasmic reticulum, (5) relative amounts of competi

tive fatty acid substrates (Brenner 1974), and (6) dietary iron (Rao 

et al. 1980). No doubt, many more factors also influence the desaturase 

system. Dietary arachidonate has been shown to express an essential 

fatty acid potency that is two to three times that of linoleate, as 

measured by its ability to reverse EFA deficiency symptoms (Crawford 

et al. 1978). 
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Much discussion has occurred concerning the dietary necessity of 

linolenate or the iu3 fatty acid family. Takehisa and Kimura (1977) 

reported dermal symptoms in rats were not prevented by dietary linolenic 

acid. The rats showed epidermal thickening and abnormally increased 

phospholipid activity in the skin, classic signs of EFA deficiency. 

Leat and Northrop (1979) also failed to show adequate protection by 

linolenate. Although dietary linolenate was capable of supporting 

growth and gestation, its addition to the diet resulted in severely 

impaired parturition. The explanation was that linolenate was in

capable of serving as substrate for PG synthesis, and PCs were neces

sary for successful parturition. These studies, however, do not prove 

that linolenate is nonessential, only that it is inadequate in isola

tion from other dietary fatty acids. Crawford e^ al. are major ex

ponents of the belief that a-linolenic acid or other u)3-fatty acids 

cannot be dismissed as nonessential (1978). They supported their con

tention with comparisons of the triene:tetraene (T/T) ratios in blood 

phospholipids of infants. Infants fed cow's milk (very low in 

linolenate) had T/T = 0.2-0.3. On the other hand, infants fed human 

milk (relatively high in linolenate) had T/T = 0.05. Crawford and as

sociates believed these results, coupled with the presence of tu3-fatty 

acids in brain and retinyl lipids were compelling reasons not to neg

lect linolenate. Tinoco et (1978), having observed orlinolenic 

acid in rat and human retinal lipids, rat synaptosomal membranes, and 

human cerebral gray matter, agreed; however, attempts to provoke 

a-linolenate deficiency apparently failed. The authors reported that 

withholding dietary a-linolenate had no effect on growth, reproduction, 
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behavior, or general fatty acid composition in any lipid class in any 

tissue. 

A further problem in assessment of EFA requirement has been quantita

tive. If we assume linoleate as the major EFA, how much is needed? 

The generally accepted level, based on ability to prevent plasma and 

hepatic T/T ratio from rising above 0.4, has been 1-2% of calories as 

linoleate (Alfin-Slater and Aftergood 1968, Holman 1970). In a study 

with young female rats, Hassam and Crawford (1978a) observed their food 

efficiency did not improve until linoleic acid intake reached 4% of 

dietary energy. From a study of human adult males on total parenteral 

nutrition (TPN), Richardson and Sgoutas (1975) also concluded the re

quirement should be set at 4% of calories from linoleate. The 1980 

edition of Recommended Dietary Allowances suggests 8-10% of calories as 

linoleate may be beneficial to at least a portion of the United States 

population (National Research Council 1980). 

For the purposes of our study, we considered EFA deficiency to be 

a complete dietary absence of a-linolenate, linoleate, and arachidonate. 

Experimental EFAD diets 

For laboratory observations two basic dietary regimens have been 

employed to induce EFA deficiency; (1) the fat-free diet, and (2) the 

saturated fat diet. In the fat-free method researchers rigorously 

excluded any fat from the diet, providing usually 20% of calories as 

protein and the remaining energy from sucrose. Due to generous body 

stores of EFA, this diet required lengthy feeding to produce either 

clinical or biochemical symptoms of EFA deficiency — in mice 8 weeks 
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(DeWille et al. 1979), in rats 15 weeks (Bohles e_t 1976) to 28 

weeks (Kaa 1976). Other investigators felt the only way to deplete 

body EFA pools was to feed a fat-free diet to the mother and so prevent 

the offspring from accumulating EFA from birth (Jonsson et al. 1979). 

The second experimental deficiency diet contained varying amounts 

of fat (27o to 30% of dietary energy as fat) but rigorously excluded 

polyunsaturated fatty acids. Thus, the dietary fat was necessarily rich 

in saturated fatty acids or medium and short chain fatty acids. Hydro-

genated coconut oil (Williams £t 1972), medium chain triglycerides 

(Hirono et £l. 1977), and hydrogenated fish oil (Kaa 1976) all were 

used. Comparisons of the experimental diets repeatedly showed that the 

presence of saturated fat in the diet accelerated and exacerbated the 

deficient state (Deuel e^ al. 1955, Alfin-Slater et al. 1965, Williams 

et al. 1972). Williams et £l. (1972) compared 25% hydrogenated coconut 

oil with a fat-free diet. The saturated fat diet resulted in more severe 

growth depression and dermal lesions than were observed on the fat-free 

diet, although the fatty acid patterns in tissues were not markedly 

different. Both diets produced the characteristic EFA deficient fatty 

acid profiles. The authors concluded that the hydrogenated coconut oil 

either interfered with EFA utilization or had an unknown metabolic ef

fect. Although both fat-free and saturated fat diets produced EFA 

deficiency, they were not identical in effect. There was evidence 

that hepatic enzymes adapted to a fat-free diet by increasing lipogenic 

activity (Romsos and Leveille 1974). The presence of fat in the diet, 

any fat, reduced this enzymatic activity to control levels (Tepperman 

and Tepperman 1970). Similarly, presence of fat in the diet may have 
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prevented a decrease in activity of lipolytic enzymes, and thus, the more 

rapid appearance of EFA deficiency resulted from continued oxidation 

of EFAs rather than conservation. The fat-free diet may be criticized 

on two accounts. A fat-free diet brings about sharp alterations in 

lipid-metabolizing enzymatic activity. A fat-free diet is of lower 

caloric density than a diet containing a moderate level of fat. Low 

caloric density might make it difficult for an animal to eat adequate 

quantities of food to maintain body weight. 

Investigations dealing with hydrogenated coconut oil (HCO) diets 

have also considered the effects of varying levels of casein. Rats were 

fed either 25% HCO and 20% casein or 25% HCO and 25% casein. After 

four weeks the group on the higher casein diet had maintained body weight 

better than the other group, although after eight weeks, weight dif

ference between the two groups had disappeared. Thus, the higher casein 

diet appeared to provide moderate protection against the growth depres

sion usually seen on EFA deficient diets (Williams et a^. 1972). Hill 

and Holman (1980) varied the casein in EFA deficient diets from 5 to 

40%. Dermal signs increased in severity at levels of protein over 30%, 

while the T/T ratio of liver phospholipid was most elevated at low pro

tein levels. Body weight increased sharply when protein content of the 

diet was raised from 5 to 20%, but there was little improvement in 

body weight at higher protein intakes. Thus, dietary protein is an 

important variable in expression of EFA deficiency. 
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Fatty acid Interactions 

The nutritional and metabolic interrelationships among fatty acids 

prevent simple considerations of isolated fatty acids, Holman (1964), 

Mohrhauer et al. (1967) and Mead (1961) were among the leaders in 

elucidating polyenoic fatty acid interactions. Elghteen-carbon fatty 

acids occur naturally in three families — u)3, oj6, and u)9 — according 

to position of the C-C double bond nearest to the methyl terminus. All 

three families undergo desaturation and elongation, competing for the 

same enzymatic system. Dependent upon the initial fatty acid, the end 

products will differ. Figure 1 shows the three fatty acid families 

and their metabolism scheme. As will be noted, the A6 desaturase can 

act upon oleate, linoleate, and a-linolenate; and this desaturation may 

occur prior to elongation. Since all three substrates compete, the 

production of C20;3iu9 can be suppressed by the presence of C18:2u)6. 

Thus, in EFA deficiency, when C18;2(u6 is lacking, appearance of C20:3w9 

is to be expected. Holman (1964) clearly showed that depression of the 

metabolites of one family is occasioned by feeding members of another 

family. Brenner (1974) reported that C20:4uj6 inhibited the conversion 

of C18:lu# to C20:3uj9. Saturated fatty acids had no inhibitory effect. 

Alpha-linolenate was a stronger competitor than oleate, having a smaller 

Kn. Therefore, presence of any m3 or m6 fatty acid suppressed synthesis 

of C20:3(ju9. The rate-limiting enzyme of the entire desaturation-

elongation system was believed to be the A6-desaturase (Hassam and 

Crawford 1978b). Perhaps cystic flbrotics, who appear EFA deficient, 

although no C20:3u# is apparent, lack /^-desaturase (Rivers and Hassam 
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Figure 1. Desaturation and elongation of C18 fatty acids (after Mead 
1961) 

1975). A recent observation suggested that a fat-free, iron-sufficient 

diet stimulated A6-desaturase activity (Rao ̂  3%. 1980). 

Importance of EFA deficiency 

Although EFA deficiency was first reported over fifty years ago, 

there was but minor interest among researchers who believed it to be of 

little practical concern in humans. The deficiency was not recognized 

in general populations, humans had generous reserves of EFA, and the 

food supply provided more than adequate EFA. In the last decade, how

ever, interest has burgeoned. Essential fatty acid deficiency is no 

longer an impossibility. The appearance of long-term TPN for surgical 

and other traumatized patients, of intravenous feeding of premature 

or other at-risk infants, and recognition of fat malabsorption syndromes 

have all mandated a fuller understanding of EFA deficiency. Richardson 

and Sgoutas (1975) reported EFA deficiency appeared in adults within 

only three weeks on TPN, and other researchers confirmed the reality of 

EFA deficiency today (Fleming et sX, 1976, Wene et aJL. 1975). Biochemical 
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evidence of EFA deficiency could be detected in infants within two 

weeks, although dermal symptoms were slower to appear (O'Neill et al. 

1977). 

Consequences of EFA deficiency 

The standard identification of EFA deficiency has been by the 

trienertetraene (T/T) ratio proposed by Holman (1960). In normal 

serum and tissues one detects only traces of eicosatrienoic acid (C20: 

31^). Thus, the ratio of C20:3u)9 to C20:4(u6 is very small. In EFA 

deficiency, on the other hand, eicosatrienoic acid increases with 

progress of the deficiency, while the level of eicosatetraenoic acid 

(C20:4w6) is believed to decrease. Thus, the T/T ratio rises. A T/T 

ratio greater than 0.4 is considered to signal EFA deficiency. The 

T/T ratio has been variously determined in plasma, liver, heart, and 

other tissues and from total lipids, phospholipids (PL), and other 

lipid classes. Depending on the method of determination and depth of 

deficiency, ratios were reported from 0.2 in blood PL (Crawford et al. 

1978) to 1.6 in skin (Skolnik et aj.. 1977) to 2.9 in salivary gland 

(Alam and Alam 1978) to 3.4 in liver (Hassam and Crawford 1978a). 

Bohles et al. (1976) believed the T/T ratio of the cholesteryl ester 

(CE) or PL fraction of plasma was the most sensitive indicator of EFA 

intake. Triglyceride had a slow turnover rate. Total lipid, containing 

a large amount of triglyceride was, therefore, less responsive to 

dietary alterations. 

With a resurgence of interest in EFA deficiency came reports of 

subtle consequences of the dietary lack. To the earlier and more 
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obvious clinical symptoms, researchers added a host of observations at

tributable to the EFA deficiency disease. DeWille et al. (1979) 

depleted mice of EFA for 70 days. At the end of 30 days, there was no 

difference in body weight, thymus, or spleen weights in EFA deficient or 

control animals. However, by 70 days the deficient mice had significantly 

reduced body weights, although their energy intake did not differ from 

control animals. Fatty livers have frequently been reported in EFA 

deficiency. Decreased hepatic secretion of triglycerides was suspected. 

Huang and Williams (1979) tested the postulate and found just the op

posite. Their animals not only had fatty livers but also a twofold 

increase in hepatic triglyceride release. The authors speculated, 

therefore, that the hepatic lipidosis must be due to enhanced hepatic 

lipogenesis in the deficient state. Mitochondria were distorted and 

enlarged by lipid deposits in liver (Richardson and Sgoutas 1975) and in 

lung (Edmonds et al. 1975). Stephan and Hayes (1978) reported depressed 

appetite, mild anemia, and lowered plasma a-tocopherol in EFA deficient cats. 

Mature male rats fed 10% of dietary energy as HCO were protected 

against oxygen toxicity as compared to rats fed either standard laboratory 

chow or a 10% cod liver oil diet (Kehrer and Autor 1978). Thus, not all 

the consequences of EFA deficiency are dire. 

Dermal symptoms are late-appearing. O'Neill et £l. (1977) recog

nized EFA deficiency in human infants biochemically long before 

observing hair loss, hair depigmentation, and poor wound healing. Jonsson 

et al. (1979) verified and quantified the slow rate of wound healing. 

Skolnik et (1977) reversed the deficiency effects on skin by topical 

application of safflower oil. Within 21 days not only had the T/T of 
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skin returned to normal, but also the T/T of serum had dropped prominently. 

Cutaneous treatment with safflower oil improved erythrocyte and plasma 

fatty acid patterns as well as skin symptoms, suggesting that in EFA 

deficiency the skin was highly permeable and oil readily absorbed 

(Bohles et al. 1976). Takehisa and Kimura (1977) reported an increased 

phospholipid synthetic activity in EFA deficient skin. 

As has previously been implied, the fatty acid pattern of tissues 

was greatly altered when EFA was lacking in the diet. The typical 

change in FA pattern caused by EFA deficiency, no matter the tissue or 

the lipid fraction, involved a rise in C20;3u)9, C16:l, and C18:l and a 

concomitant decline in C18:2(ju6 and C20:4u6 (Bohles ̂  al. 1976, Holman 

1964, Kehrer and Autor 1978). Drastic FA composition changes were re

ported in salivary gland (Alam and Alam 1978), endocrine system (Panos 

and Finerty 1954), oral palatal epithelium (Lekholm 1976), serum and 

adipose (Privett e^ al. 1965), liver (Peluffo et al. 1976, Fallani et al. 

1976), lung (Kyriakides et al. 1976), brain (Sun 1972, Odutuga 1977), 

and erythrocytes (Hirono e^ 1977). Other lipids were also affected 

by the deficiency. Brain cell and membrane structures were shown to be 

disturbed while cerebroside and sphingomyelin content of brain was di

minished (Odutuga 1977). 

As might be expected, EFA deficiency has profound effects on 

enzymatic activities. Hazinski et (1975) found elevated pentose 

cycle activity in isolated adipocytes which was not reversible by the 

addition of the EFA metabolite prostaglandin E^. Brivio-Haugland et al. 

(1976) speculated that membrane structure was altered so as to reduce 

binding affinity, change the number of receptor sites, or alter concentra-
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tion of cofactors for enzyme activation. 

Essential fatty acid deficient animals had a reduced inflammatory 

response (Denko 1976) and a reduced humoral immunity response (DeWille 

et 1979). Essential fatty acid deficient human infants had im

paired platelet aggregation in response to ADP compared to other low 

birth-weight infants. Clinical hemorrhage occurred in 80% of EFA 

deficient infants (Friedman et al. 1977). Essential fatty acid deficiency 

was implicated in the occurrence of hypertension. Genetically hyper

tensive rats had a lower level of C20;4(u6 in platelets than normal 

rats, which suggests an increased requirement for EFA in hypertensives 

(Lehmann £t 1977b) . 

The effects of EFA deficiency on lung are manifold. Not only did 

EFA depletion enhance survival from 0^ toxicity as previously reported, 

but also rat lung lipids reflected the typical EFA deficiency pattern 

(Kehrer and Autor 1978). Table 1 has a comparison of pulmonary fatty 

acid composition in EFA deficiency and sufficiency. Weanling male rats 

fed a fat-free diet for 24 weeks had reduced secretion of pulmonary sur

factant and enlarged mitochondria with cristae packing the intramito-

chondrial space (Edmonds et aJL. 1975). Friedman and Rosenberg (1979) 

isolated human pulmonary surfactant for FA analysis and reported de

creased palmitate and palmitoleate and increased oleate under condi

tions of EFA deficiency. It was a striking observation that although 

plasma palmitate rose during EFA deficiency, pulmonary surfactant 

palmitate dropped. This alteration in the FA composition of surfactant 

may impair its surface active qualities. Indeed, Hopkins et (1963) 
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Table 1. Fatty acid composition of mature rat lung lipids after 33 days 
on experimental diets (from Kehrer and Autor 1978). 

Triglyceride Phospholipid 
% of total FA % of total FA 

Fatty acid HCO* CLOb HCO CLO 

16:0 24.7 21.9 30.0 33.9 

16:1 8.0 7.7 8.6 8.1 

18:0 5.2 4.9 13.5 11.7 

18:1 36.9 36.8 18.3 15.3 

18:2 1.6 3.4 1.1 0.8 

18:3 0 9.5 0 2.3 

20:4 0.3 2.7 17.3 7.1 

^HCO = hydrogenated coconut oil, 10% of calories. 

^CLO = cod liver oil, 10% of calories. 

reported that EFA deficiency caused a respiratory disease syndrome in 

chickens. Kyriakides et al. (1976) independently showed the palmitate con

tent of pulmonary tissue to be decreased in EFA deficiency and the 

surfactant activity of lung lavage phosphatidylcholines to be impaired, 

Refeeding of 4% safflower oil reversed the effects. Gross lung morphology 

was not altered in EFA deficiency, although Type II alveolar cells were 

affected (Friedman and Rosenberg 1979). 

As EFAs are precursors for prostaglandin (PG) formation, one would 

expect EFA deficiency to be apparent in PG metabolism. Indeed, explana

tions for the previously mentioned hypertension, impaired platelet ag

gregation, inflammatory and immune responses may rest in the PG 
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synthetic capacity of the appropriate organs and tissues. Friedman 

et al. (1978) reported a decrease in a PGE metabolite in urine in human 

infants with EFA deficiency. Prostaglandin content of brain was 

diminished and platelet PG formation reduced in EFA deficiency (Hassam 

et al. 1979). Alterations of kidney PG metabolism occurred (Van Dorp 

1971). Ziboh et aX. (1974) reported a decline in PG synthetic capability 

in EFA deficient animals. Attempting to identify the cause, they found 

that an unsaturated FA occurring in the lipids of EFA deficient rats 

directly inhibited the cyclooxygenase activity of sheep vesicular glands. 

This inhibiting fatty acid was probably C20:3(u9, and it appeared to act 

by competitive inhibition. The effect, however, was insufficient to 

explain fully the decrease of synthetic capacity in EFA deficient animal 

tissues. 

Bailey (1977) showed that several types of cells were able to grow 

and metabolize normally in the absence of EFA, e.g., human skin 

epithelium, human fetal cells, and rat liver parenchyma cells. He 

concluded that EFAs were not required for membrane structural purposes 

and that perhaps their sole essential biological function was to serve 

as precursors for PGs. However, cell growth and reproduction in culture 

does not signify ability to function properly in the whole organism. 

Ziboh and Haia (1972) found that treating EFA deficient rats with topical 

applications of PGEg cleared the dermal symptoms. Parnham et (1979) 

reported that not all the consequences of EFA deficiency could be re

lieved by PG supplementation. Hazinski ejt al. (1975) concluded that the 

metabolic effects of EFA deficiency were more complex than simply re

duced levels of PGs, since in vitro addition of PGE^ had no effect on 
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EFA deficient cells. The role of EFAs as precursors of the PGs is vital 

but is probably not the sole biological function of the EFAs. 

Prostaglandins 

Less than ten years after recognition of the EFAs came the dis

covery of a vaso-depressor, smooth-muscle-stimulating substance in human 

semen that von Euler (1935) called "prostaglandin." It was more than 

25 years later before the structure of this new substance was determined, 

and that proved to be one of the most fruitful and provocative dis

coveries of nutritional biochemical science. For the prostaglandins 

were shown to be active metabolites of the EFAs. Prostaglandins have a 

wide distribution in mammalian tissues and in other animal species 

(Normura and Ogata 1976). Prostaglandins and their precursors and 

products participate in a host of physiological processes, usually 

mediating metabolic actions within the cells in which they are 

synthesized. 

Prostaglandin synthesis 

The details of PG biosynthesis are not yet fully described, although 

much progress has been made. The basic requirements for PG synthesis 

include; (1) the prostaglandin synthetase enzyme system — ECl.14.99.1; 

(2) twenty-carbon u)3 or u)6 fatty acids with multiple sites of unsatura-

tion, (3) molecular 0^, and (4) cofactors (reducing agents). Prosta

glandins of the one series are metabolic products of dihomo-Y-linolenic 

acid. Prostaglandins of the two series are metabolic products of 
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arachidonlc acid. Figure 2 shows the relationships of the u)6 EFAs and 

their PG products. 

C18:2cu6 C18:3u)6 — C20:3m6 — 

PGE^ 

C20;4au6 PGFgQ, 
PGEg 
PGF, 
PGl' 

Figure 2. Generalized scheme of uu6 fatty acid conversion to prosta
glandins 

Fatty acid substrates for PG synthesis must be nones ter if ied. Because 

the PL fraction is rich in EFA, much attention has focused on phospho-

lipase, and this enzyme has been considered rate-limiting (Russell et al. 

1975), at least for the two series of PGs. Vane (1971) showed that non

steroidal anti-inflammatory agents, e.g., aspirin and indomethacin, 

inhibit PG synthesis. Lands et (1973) showed that many antioxidants 

also inhibit PG synthesis. 

PGs are rapidly metabolized, having a biological half-life in the 

circulation of a few minutes at most (Vane 1969). Açcording to one 

estimate, more than 80% of the PGE^ was metabolized on a single pass 

through the lung (Ferreira and Vane 1967). Golub et £l. (1975) 

determined that 68% of the PGE^^ was removed from the circulation in one 

transit through the lung, while only 8% of the PGA^ was removed. 

Prostacyclin 

Moncada and Vane (1977) reported the discovery of an endoperoxide 

intermediate in PG metabolism which was 20 to 30 times as potent as 

PGE^ in inhibition of platelet aggregation. This substance, termed 
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prostacyclin or PGI^, was formed exclusively in the vessel wall and 

was, in fact, the major route of endoperoxide metabolism in vessel 

walls. Observations showed the vessel microsomes did not use arachidonate 

to generate PGI^. A new homeostatic mechanism was proposed. "Plate

lets attempting to stick to the vessel wall release endoperoxides which 

are then used by the endothelial cells to make PGI^ which then repels 

the platelets and stops them from sticking" (Moncada and Vane 1977, p. 

163). Under normal circumstances, the intact vessel wall protects it

self from platelet deposition. However, vascular damage may impair 

production of the protective prostacyclin and lead to thrombosis. 

Gryglewski et a%. (1978) measured the effects of prostacyclin but 

not prostacyclin itself by bathing rabbit collagen strips with arterial 

and venous blood. They found PGIg was consistently higher in arterial 

than venous blood and concluded that the lung served an important 

endocrine function by continuously generating and releasing PGIg in 

vivo and thereby protecting against intraarterial thrombosis. 

Dembinska-Kiec et (1979) concluded from their observations that 

prostacyclin was the major arachidonate metabolite formed by normal 

lungs. 

Relationship of PCs and diet 

Prostaglandins have potent and complex effects in physiological 

systems. In many instances different PGs have opposing effects. The 

balance among PG forms is probably a mechanism for fine, immediate 

control of local events. Awareness of the multitude of physiological 

effects of the PGs led to concern over the levels of PGs in various 
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tissues. Control of PG biosynthesis appeared to be a method for regu

lating body functions. Availability of the precursor fatty acids by 

dietary alterations was of practical importance. 

Pros taglandins and EFA deficiency 

Under conditions of EFA deficiency, when precursor levels are low, 

one expects PG biosynthesis to be diminished, Vincent et al, (1974) 

reported that the inhibition of collagen-induced platelet aggregation 

by PGE^ was considerably reduced in EFA deficient rats. However, there 

was no measurement of PGs, Others, reporting on EFA deficiency and PGs, 

implied reduced PG synthesis without actually measuring the PGs (Kupiecki 

and Weeks 1966, Hazinski al. 1975, Ziboh and Hsia 1972). Kaa (1976) 

found that PGEg synthesis in renal medulla of EFA deficient rats actually 

increased. Parnham £t (1979) measured endogenous PG production in 

EFA deficient rats using a bioassay of PGE on isolated rat stomach strip. 

As this method did not adequately differentiate PGs, it is difficult to 

evaluate the results. Nevertheless, the authors showed reduced endog

enous PG in serum. Other reports also showed that an EFA deficient 

diet reduced PG synthesis (Van Dorp 1971, Weston and Johnston 1978, 

Christ and Nugteren 1970). After examining many batches of animals 

over time, Parnham et (1979) concluded that endogenous PG production 

was an important indicator of EFA status. Depressed PG synthesis in 

EFA deficiency could be due not only to diminished precursor availability 

but also to the competitive, inhibitory presence of C20:3uj9, 
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Prostaglandins and PUFA-rich diets 

Conversely, were increasing levels of dietary EFA accompanied by 

increasing PG synthesis? In an early experiment on this problem. Silver 

et al. (1974) administered large doses of arachidonic acid to rabbits. 

The treatment resulted in sudden death of the animals due to thrombosis. 

Since it had previously been shown that an arachidonic acid metabolite, 

PGFg^, was an aggregatory agent, these results strongly suggested that 

altering the precursor fatty acid level could affect PG synthesis. 

Danon et al. (1975) reported that rat tissues could be enriched with PG 

fatty acid precursors. Ethyl arachidonate and ethyl-dihomo-y-linolenate, 

fed by stomach tube, were incorporated into all lipid classes of the 

tissues observed, but especially into triglycerides. In the same year, 

Hwang et a%. (1975) measured the PGs themselves after different dietary 

treatments. In a paper that is now a classic in the area, they reported 

that serum concentrations of PGE, and PGF„ measured by radioimmuno-
1 2a •' 

assay (RIA) were higher in rats fed 20% corn oil than in those fed 20% 

beef tallow. Although the serum samples were not handled in a properly 

controlled manner at autopsy resulting in some variability, the results 

have been confirmed in many later experiments. By feeding trans-

linoleate to rats for 12 weeks, Hwang and Kinsella (1978, 1979) brought 

about a decrease both in precursor fatty acids and in PG synthesis in 

arterial blood. Feeding linolenate, Hwang and Carroll (1980) confirmed 

that PG synthesis could be regulated by precursor fatty acid supply. 

Prostaglandin and arachidonic acid levels in serum were well correlated 

(Hwang et 1979) . Meydani ejt al. (1978) found that lung PG synthetic 

potential was increased tenfold in rats on a high compared to a low-PUFA 
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diet. Mathias and Dupont (1979) varied the P/S ratio of a 20% fat diet 

between 0.4 and 5.5. No change in PGFg^ and PGEg in lung nor in ten-

minute incubated serum occurred. However, if the P/S ratio of the 

diet were raised to 9, then serum PG levels increased dramatically. 

Dupont et (1978) varied dietary linoleate in graded levels from 0 

through 30% of energy and measured venous serum PGE^, PGEg, and PGF^^. 

Increasing the dietary linoleate content from 5% to 30% produced a 

linear rise in PG synthesis rate for PGE^ (r = 0.86) and PGF2q, (r = 

0.97), but there was no observed alteration in PGE^ synthesis. DeDeckere 

et al. (1979) fed rabbits and rats for four weeks sunflower seed oil, 

hydrogenated coconut oil, or lard. Prostaglandins were measured by 

gas chromatography and bioassay. The authors failed to see an effect 

of dietary fat on PG synthesis. Similarly, Fine ejt (1977) found 

that serum PGE^ was not affected by the P/S ratio of the diet. 

Thus, results are mixed. Not all researchers find a correlation 

between dietary EFA and PG synthesis or endogenous PG. Some of the 

discrepancy is due, no doubt, to differing methods of sample handling 

and differing analytical techniques. 

Prostaglandins are present in tissue in minute amounts. Injury, 

manipulation, sample collection itself stimulate generation of prosta

noids. During sample storage, PG synthesis continues unless inhibitor 

is added. Even small discrepancies in handling cause major differences 

in PGs measured. Mass spectroscopy is the preferred analytical method 

but has limited sample capacity. Radioimmunoassay can handle large 

numbers of samples but is subject to cross-reactivity and specificity 

problems. The use of standardized, controlled tissue handling and 
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similarity in analytical procedures is, therefore, essential for meaning

ful comparisons. 

Vitamin E 

Vitamin E and polyunsaturated fatty acids are intimately linked in 

the diet and in the body. The consensus holds that vitamin E require

ment is not a simple, fixed value. While the dietary requirement may 

be influenced by age (Farrell et 1978), environmental influences, 

and toxic materials, the major determinant of vitamin E need is amount 

of PUFA in the diet (Harris and Embree 1963). Generally, the interrela

tionship of vitamin E and PUFA is expressed as a ratio of vitamin E (mg): 

PUFA (g). Vitamin E is a generic term applying to total tocopherols and 

including a, P, y, 6 forms. Alpha and gamma tocopherols are by far the 

most common in our food supply. Gamma tocopherol is present in vegetable 

oils in higher concentration than a-tocopherol (Bieri and Evarts 1975b), 

but Y"tocopherol has only 20% the biological activity of o;-tocopherol 

(Bieri and Farrell 1976). For the purposes of the present discussion, 

vitamin E is used to indicate vitamin E activity and presumes inclusion 

of total tocopherols unless otherwise specified. 

Vitamin E^ requirement 

In the "Elgin" studies adult males who were maintained on a dietary 

ErPUFA ratio of 0.4 slowly developed vitamin E deficiency as manifested 

by erythrocyte hemolysis (Horwitt 1962). At an E:PUFA ratio equalling 

0.9 patients remained free of undue hemolysis but incurred no reserve, 

for within one week of cessation of supplementation, they exhibited 
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abnormal hemolysis. Thus, the conclusion was that an EtPUFA ratio ap

proximating 1.6 was more truly adequate. The E:PUFA ratios required 

for adequacy of vitamin E nutriture vary by species. Rats on a 15% 

corn oil diet appeared normal when the E:PUFA ratio was as low as 0.1 

(Harris and Embree 1963). The "average" U.S. diet in 1960 had an 

E;PUFA ratio of 0.616, Because Harris and Embree (1963) were unaware of 

overt deficiency, they concluded 0.6 could serve as a reference ratio 

for adequacy of vitamin E supply. Any diet with an E:PUFA ratio less 

than 0.6 should be considered potentially deficient. 

The use of ratios has been severely criticized as being rigid, 

simplistic, and unrealistic (Witting and Lee 1975a). In diets of 5% 

or 10% fat and graded levels of PUFA with no diet providing more than 

2.75% of calories as PUFA, the levels of PUFA and a-tocopherol in rat 

plasma increased in parallel. This result suggested that increasing 

intake of PUFA was automatically accompanied by increased intake of 

vitamin E. However, when linoleate intake reached 5.5% of calories, 

plasma tocopherol began to drop (Bieri and Poukka 1970). Clearly 

a single ratio was not adequate over a range of PUFA intakes. ,Jager 

(1972) explored this same problem in detail and confirmed the conclusion. 

Using erythrocyte hemolysis in rats as the deficiency symptom, he 

calculated a shift in vitamin E requirement with changing linoleate 

intake. However, the relationship between the intakes of the two 

nutrients was not linear. As linoleate varied from 0 to 50 g/kg diet, 

the vitamin E requirement was fairly stable. As linoleate increased to 

higher intakes, the vitamin E requirement began to rise exponentially. 

Dietary linoleate at up to 7% of calories caused no increase in 
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vitamin K requirement, but when dietary linoleate was over 20% of 

calories, the vitamin E requirement was increased at least 50% (Jager 

1972). 

Dam (1962) showed that increased dietary PUPA increased vitamin E 

requirements. Moreover, excessive intakes of PITFA appeared to precipitate 

vitamin E deficiency symptoms. Erythrocytes from vitamin E deficient 

rabbits were not susceptible to dialuric acid peroxidative hemolysis 

until the rabbit diet was supplemented with arachidonate. Feeding PUFA 

to vitamin E depleted rabbits acutely initiated the onset of hemolysis 

and muscular dystrophy (Brin et al. 1974). Bunnell e^ aj.. (1975) fed 

a low vitamin E diet to men engaged in hard physical labor. One group, 

which received safflower oil, showed a sharp decline in plasma tocopherol 

levels from their normal.1.42 mg/100 ml to 0.5 mg/lOO ml, the minimally 

adequate level. The men had no symptoms of physical or muscular weak

ness. In an animal study a threefold increase in dietary PUFA depleted 

tissue stores of vitamin E, reducing E:PUFA ratios 26-63% (Bieri £t al. 

1978). 

Vitamin E requirement may be influenced by tissue PUFA levels 

(Horwitt 1962). At low levels of intake (1-2% of calories), linoleate 

and other (u6 fatty acids concentrated largely in the PL. A maximum 

level was reached beyond which the composition of PL no longer altered 

significantly. Thus, at higher dietary levels of linoleate, accumula

tion occurred in the other lipid compartments. Both phospholipids and 

neutral lipids, therefore, were important in determining vitamin E 

requirement (Witting 1972). The vitamin E requirement was related to 

tissue PUFA. But the tissue PUFA was related to the dietary PUFA. 
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The general trend to increased consumption of PUFA was reflected in 

higher levels of PUFA in the adipose of female college students as 

compared to the early I960's (Witting and Lee 1975b). Adipose linoleate 

levels should be periodically evaluated and vitamin E intakes appropriately 

adjusted (Witting and Lee 1975a). 

Amount of adipose tissue as well as fatty acid composition has 

also been implicated in establishment of vitamin E requirement. Obese 

rats had threefold higher plasma or-tocopherol than normal weight rats 

Bieri and Evarts 1975a). On the other hand, obese rats had less 

Of-tocopherol in lung and heart tissue than the control rats (Bieri and 

Farrell 1976). 

Vitamin E intakes 

While it is well established that dietary and tissue PUFA raise 

the vitamin E requirement and while there has been a continued trend 

in the U.S. to increase PUFA intake, there has been little concern 

over potential vitamin E deficiencies. Recent statistics indicate 

the average consumption of linoleic acid in the U.S. was 23g/person/ 

day (Rizek £t aji. 1974). The average vitamin E intake from the diet 

was no more than 15 mg/person/day (Weiser and Salkeld 1977). In 

Australia a review of diets showed 7 out of 25 were inadequate in 

vitamin E according to established allowances (Mobile and Woodhill 1976). 

Examination of the dormitory food service meals at a Texas university 

revealed the EtPUFA ratio was less than 0.5, potentially deficient 

(Witting and Lee 1975b). Another estimation showed the average U.S. 

diet to have an EzPUFA ratio of 0.43 (Bieri and Evarts 1975b). 
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Failure to be concerned about these presumptively deficient vitamin 

E intakes rests on the comfortable assumption that increasing PUFA in

take automatically increases tocopherol intake. This assumption has 

been challenged. Very little vitamin E occurs in fats of animal origin. 

The richest source is vegetable oil. Bieri and Evarts (1975b) concluded 

that all vegetable oils were satisfactory sources of vitamin E with 

such EzPUFA ratios as corn oil 0.49, soybean oil 0.60, and safflower 

oil 0.35. However, it was demonstrated that these ratios, as guides 

to adequacy, are useless except at low to moderate fat intakes. Further

more, absorption of tocopherol may vary. Witting (1975) reported that 

increased ingestion of vitamin E resulted in decreased absorption. Weber 

et al. (1964) found that PUFA actually interfered with crtocopherol 

absorption. Peake et al. (1972) were unable to confirm a differential 

absorption when feeding Qf-tocopherol with either corn oil or lard. More 

recent evidence showed fatty acids were absorbed more effectively than 

tocopherols (Weiser and Salkeld 1977). If this is true, then in

creasing dietary PUFA may be accompanied by increased dietary E, but 

actual appearance in circulation and body cells of excess PUFA does 

not necessarily mean concomitant appearance of more tocopherol. More

over, much dietary vitamin E is the less potent y-tocopherol. Even 

if the vitamin E;PUFA ratio of the diet were constant, the a-tocopherol: 

PUFA ratio of the absorbed matter and of the body tissues might be 

variable. 
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Functions of vitamin E 

The functions of vitamin E in the organism are still debated. A 

1976 review of vitamin E (Bieri and Farrell) proposed four roles 

of the vitamin: (1) As an antioxidant. There is extensive evidence 

tocopherols act in this capacity (Dillard et 1978b, Downey et al. 

1978, Hafeman and Hoekstra 1977, Wilson et al. 1978). Vitamin E exerts 

its antioxidant capacity by disrupting the chain generation of free 

radicals in lipid peroxidation. That this is the sole or even major 

role of vitamin E is doubtful for other biological antioxidants exist, 

e.g., glutathione reductase, that appear to be more important in inter

rupting radical chain reactions. In addition, other antioxidants can

not prevent all derangements of vitamin E deficiency. (2) As a struc

tural component of membranes. There is as yet no evidence to support 

this function, although Bonnetti and Novello (1976) reported that 

a-tocopherol was primarily localized within the cell bound to membranes. 

(3) As a regulator in protein synthesis. (4) As a regulator of enzyme 

activity. In vitamin E deficiency several enzymes do alter in activity, 

e.g., muscle creatine kinase, liver xanthine oxidase. 

Effects of deficiency or excess 

Although many fascinating effects of excessive or deficient dietary 

vitamin E have been observed, the succeeding paragraphs will consider 

only the six major effects that suggested the design and hypothesis of 

the present research. These are the effects on (1) hemolysis, (2) 

pulmonary response to oxygen stress, (3) tissue fatty acid patterns, 

(4) tissue tocopherol levels, (5) immunity, and (6) platelet aggregation. 



www.manaraa.com

36 

The classic vitamin E deficiency test is degree of erythrocyte 

hemolysis in vitro. Although open to criticism as not nutrient-specific 

and insensitive to a range of vitamin E intakes, erythrocyte hemolysis 

is still frequently measured for correlation and comparison with other 

aspects of vitamin E nutriture. Yang and Desai (1977a) reported that 

vitamin E deficient rats exhibited spontaneous red blood cell (RBC) 

hemolysis in saline-phosphate buffer while vitamin E supplemented rats 

did not. Rats received a vitamin E deficient diet with 10% by weight 

molecular distilled corn oil as fat source. Rats receiving no vitamin 

E supplement had 87% hemolysis, while rats receiving 25-25,000 lU/kg 

diet/day dl-otocopheryl acetate had only 2% hemolysis. Although 

graded amounts of dl-a-tocopheryl acetate were fed, there was no dif

ference in hemolysis once a critical minimum intake was achieved. As 

a measure of vitamin E nutriture, therefore, hemolysis was useful only 

in an either-or situation — either deficient or adequate — telling 

nothing about excessive intakes. A comparison of ot- and y-tocopherols 

confirmed that a-tocopherol protected against hemolysis at lower 

doses than ^-tocopherol (Aftergood and Alfin-Slater 1978). Horn et al. 

(1978) confirmed the relationship of vitamin E and hemolysis in Rhesus 

monkeys. Vitamin E was found to protect against oxidative damage to 

RBC membranes and hemoglobin in rats. Thiobarbituric (TEA) reactants 

were decreased, indicating inhibition of oxidation (Chow 1978). 

Vitamin E appears to have a major protective role in lung. Pre

mature infants frequently develop respiratory distress syndromes and 

are given respiratory assistance with enriched oxygen atmospheres. 

Prolonged treatment leads to severe toxic effects manifested in lung 
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degeneration and identified as bronchopulmonary dysplasia. Ehrenkranz 

et al. (1978) reported an attempt to forestall development of the 

disease by giving the infants intramuscular injections of vitamin E. 

None of the vitamin E treated infants developed bronchopulmonary dysplasia, 

while half of the control infants did. Vitamin E appeared to modify the 

toxic effects on lung of inspired high 0^ concentrations. This study 

has been sharply criticized (Northway 1978) for poor design, improper 

controls, and biased results. Nevertheless, the theory seems to be 

valid. Oxygen toxicity occurs in the lungs and is associated with in

creased lipid peroxidation (Dumelin et 1978). Vitamin E is known 

to antagonize lipid peroxidation (Dillard et al. 1978a). Tocopherol 

stores are low in infants, especially in premature infants (Goldbloom 

1963, Wright et 1951). Animal studies support the hypothesis that 

vitamin E protects lung tissue from oxidative damage. When rats on 

diets either low or high in vitamin E for five weeks were exposed to 

ozone, the rats on the low vitamin E diet exhibited greater prolifera

tion of mitochondria and greater 0^ consumption than the rats on the 

high vitamin E diet. This enhanced response to the ozone challenge 

with a low vitamin E diet suggested that vitamin E increased an 

animal's ability to withstand oxidant stress (Mustafa 1975). Chow 

(1977) confirmed these findings. Similar results have been reported 

in the mouse lung (Menzel ̂  1978). Vitamin E supplementation in 

the diet reduced oxidative damage in lung. 

Dietary vitamin E influenced the total fatty acid content of 

plasma (Cho and Sugano 1978). Did tocopherol also influence the fatty 

acid pattern of tissue lipids? In vitamin E deficiency the levels of 
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C20:4uj6 rose in liver and gastrocnemius and quadriceps muscles of 

the rat (Bernhard et 1963, Witting and Horwitt 1967, Witting et al. 

1967). Other investigators found that cu6 fatty acids, with the excep

tion of C20:4ufi rose in phospholipids of vitamin E deficient rats (Lee 

and Barnes 1969). Further attempts to clarify this relationship some

times failed to demonstrate an effect by vitamin E on FA composition of 

tissues. Using chicks. Miller and White (1975) explored possible ef

fects of three different antioxidants on tissue fatty acid patterns. 

Neither selenium, nor dl-a-tocopherol, nor ethoxyquin had any influence 

on the distribution of fatty acids. Donovan et (1977) fed rats 5% 

stripped lard or 5% stripped corn oil, supplemented with 0, 10.5, or 

105 mg/kg dl-a-tocopheryl acetate. All diets were EFA sufficient and sup

plemented with sodium selena te. After three weeks diet and lung fatty 

acids were equilibrated. Although the source of dietary fat altered 

relative concentrations of pulmonary fatty acids, dl-a-tocopheryl acetate 

supplementation had no effect. Recent work by these same authors 

duplicated the results in another species. Vitamin E, whether sup

plemented at 0, 10.5, or 105 mg/kg diet, had no significant effect on 

mouse lung fatty acid composition (Donovan and Menzel 1979). Observa

tions of the fatty acid patterns of platelets established lack of a 

relationship between the levels of a-tocopherol and individual FAs 

(Schoene and Lehmann 1978). A rise in C20:4u)6 and a decline in C18:2uj6 

on a vitamin E deficient diet was apparent in rabbit muscle but less 

obvious in heart, liver, lung, or kidney (Chan et £l. 1978). A possible 

explanation for these inconsistencies came from research by Farnsworth 

et al. (1979). They studied the effects of vitamin E and selenium 
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deficiencies on the fatty acid composition of rat retinal tissues. 

A dietary deficiency of either antioxidant caused a large decrease in 

the total PUFA of rat retinal pigment epithelium with slight increases 

in C18:2iJ6 and 020:41)6. In contrast, there were no changes in the whole 

retina. Thus, fatty acid compositional alterations were not generalized 

to all tissues when changing antioxidant intakes. 

In contrast to fatty acids, tissue tocopherol levels were more 

clearly related to dietary tocopherol. Lehmann ̂  al. (1977a) fed human 

volunteers 7.6 mg a-tocopherol/day for 40 days followed by 12.9 mg 

a-tocopherol/day for 40 days. In both females and males the plasma 

tocopherol levels rose in response to the dietary increase. However, 

the dietary fat also increased and plasma total lipids increased which 

has been shown to influence plasma tocopherol. Realizing that assess

ment of vitamin E status using plasma is complicated by plasma total 

lipid levels, Lehmann (1978) then measured only platelet tocopherol. 

She reported a logarithmic relationship between dietary and platelet 

tocopherol and no relation between platelet tocopherol and plasma total 

lipids. Thus, this method was proposed as superior for assessment of 

vitamin E nutriture. Yang and Desai (1977b) showed a definite hepatic 

deposition of cc-tocopherol in response to increasing dietary tocopherol 

intakes. In contrast, pulmonary tocopherol increased only slightly when 

the tocopherol content of the diet increased (Aftergood and Alfin-Slater 

1978). 

Vitamin E appears linked to immunological functions. In the mouse 

vitamin E supported P-cell mitogenesis in spleen and lymph node (Shloss 

and Corwin 1977). In adult male rats fed 500 mg dl-a-tocopheryl acetate 
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three times weekly, the ability of mixed leukocytes to kill Staphylococcus 

aureus was totally eliminated. Excess vitamin E appeared to inhibit 

the oxygen-dependent free radical process involved in the bactericidal 

activity of leukocytes (Fong et al. 1978). Authors in India giving 

adult and young human males 300 mg dl-a-tocopheryl acetate/day for 

three weeks also found significantly depressed bactericidal activity 

by leukocytes and a depression in mitogen-induced lymphocyte transforma

tion. A simultaneous in vivo test of skin hypersensitivity showed 

vitamin E had no effect. At the same time, one subject on vitamin E 

experienced complete relief of a nasal allergy and another had improve

ment of asthmatic attacks (Prasad 1980). Thus, vitamin E had differential 

effects on different limbs of immune response. Corwin and Shloss (1979) 

reported vitamin E to be a mitogen acting on the immune response by a 

mechanism other than antioxidation. At suboptimal and at high levels 

vitamin E was more effective as a stimulant to the thymus-dependent 

lymphocyte response to conconavalin A than vitamin E at normal dose 

levels (Corwin and Shloss 1980). 

The connection between tocopherol and immunity may be through 

prostaglandins. Chickens fed a high vitamin E diet exhibited reduced 

mortality from an E. coli challenge as well as depressed PGE^, PGE^, 

and PGFg^ in spleen and in bursa (Likoff £t al. 1978). This suggested 

vitamin E enhanced the immune response by reducing PG production. 

Dietary vitamin E has been implicated in irregularities of plate

let aggregation. A PUFA-rlch vitamin E-deficient diet fed to pigs was 

associated with pronounced platelet thrombosis (Nafstad 1974). Coagula

tion could be induced in rats on either an a-tocopherol deficient diet 
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or a lipid rich diet. However, if the high lipid diet were supple

mented with (Ï-tocopherol, the animals were protected (Fong 1976). 

Corrigan and Marcus (1974) reported a case study of a patient with de

layed coagulation time who had been self-administering excessive doses 

of vitamin E. A 16-month-old infant with signs of vitamin E deficiency 

had abnormal aggregation (Khurshid et al. 1975). Platelet aggregation 

occurred with a biphasic response — the immediate phase and the second 

wave. Addition of a-tocopherol to the incubation medium did not affect 

the first phase but inhibited the second. This second phase could also 

be inhibited by indomethacin and acetylsalicylate sodium (Fong 1976). 

Not only crtocopherol but its nicotinate and acetate esters exerted 

inhibitory effects on arachidonate-induced platelet aggregation (Svensson 

and Oki 1978). As platelets aggregated, lipid peroxides were released. 

When a-tocopherol was added to the incubation medium at concentrations 

up to 1.5 mM, a dose-dependent reduction in platelet aggregation was 

noted. There was rapid uptake of a-tocopherol by platelets, and a 

linear relation was established between platelet and concentration of 

CÏ-tocopherol in the incubation medium. Alpha-tocopherol inhibited the 

second wave of aggregation and decreased lipid peroxide release from 

the platelets (Steiner and Anastasi 1976). However, in vitro incuba

tion of platelets with vitamin E failed to inhibit the platelet lipoxy

genase or depress ^^C-HETE synthesis from arachidonate (Gwebu et al. 

1978). 
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Vitamin E and PG synthesis 

The influence of vitamin E on immunity, lung protection, and plate

let aggregation suggests a physiological role in PG metabolism. Many 

studies have hinted that PG synthesis is altered in vivo by vitamin E, 

though few actual measures have been taken. Lands et al. (1973) found 

that 500 pM cr-tocopherol inhibited PG synthesis by 50% and concluded 

that the inhibition was related to the structure of the enzyme (sheep 

vesicular gland oxygenase) and not the antioxidant ability alone. 

Although o^tocopherol added to the incubation medium significantly 

inhibited soybean lipoxygenase, it had no effect on mammalian cyclooxy-

genase as measured by incorporation of label in product in a bovine 

vesicular gland microsomal system (Panganamala et 1977). Vitamin E 

at 1.0 mM to 5.0 mM failed to inhibit PG synthesis (Zenzer and Davis 

1978). Thus, results of the in vitro work are contradictory. 

Nearly all the in vivo investigations of the effect of vitamin E 

on PG synthesis have been conducted by one laboratory and have focused 

on vitamin E deficiency. Feeding a vitamin E deficient diet of 7% 

stripped lard and 3% stripped cod liver oil to rabbits, Chan et al. 

(1978) reported a metabolite of PGFg^ in plasma was higher in deficient 

than in control animals. Later, using a microsomal preparation from 

rabbit semitendinosus muscle, they found a significant depression in 

PGEg and PGFg^ which was restored to normal after supplementation with 

oral tocopherol (Chan et al. 1979). This depressed synthesis of prosta

glandins, they felt, explained in part the observed elevations in muscle 

C20:4uj6 in vitamin E deficiency. Skeletal muscle cyclooxygenase normally 

produced PGE^ and PCFg^ in a 1:1 ratio. While vitamin E deficiency 
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significantly reduced the enzyme activity, the PGE^/PGF^^ ratio was un

changed. Cyclooxygenase activity returned to normal within 48 hours of 

oral tocopherol supplementation (Chan £t 1980a). The key enzyme 

controlling PG catabolism is 15-hydroxy-prostaglandin dehydrogenase 

(PGDH). Vitamin E deficiency elevated activity of PGDH in skeletal 

muscles of rabbit but not in heart or kidney (Chan et al. 1980b). 

Prostaglandin synthesis was also depressed in testis during vitamin E 

deficiency (Thuy et 1978). In contrast, Hope et al. (1975) re

ported PGE^, PGE^, and PCEg^ were elevated in serum from vitamin E 

deficient animals. 

Little work has been done on the effects of excessive vitamin E on PG 

synthesis in vivo. Likoff e^ £l. (1978) measured PGs in chickens which 

received normal and high vitamin E diets. Splenic PGE^, PGE^, and 

PGFg^ synthesis was inhibited by the high vitamin E diet. Hope et al. 

(1975) fed rats four different levels of «-tocopherol and measured serum 

PGs. There was an inverse dose-response. The higher the serum tocopherol 

level, the lower the level of PGEg and PGF^^. 

The evidence, both direct and indirect, suggests a relationship 

between vitamin E and PG synthesis. It remains to clarify the rela

tionship, the effective doses and isomers, the responsive prostanoids, 

the mechanism, and the functional significance. 
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METHODS 

Experimental Design 

Animals in Experiment I were randomly assigned to control or EFAD 

groups. In Experiment II seventeen litters of four or five mates for a 

total of 80 rats were depleted of EFA for 45 days. Results from the 

first experiment showed that a 45-day depletion period would pro

vide a population whose trienettetraene ratio was >0.4. Previous ex

perience also indicated that a few animals would fail to grow uniformly 

or would develop diseases, or otherwise become unfit for continuance in 

an experiment. Therefore, from the 80 EFAD animals we were able to 

select a uniform population of 60 animals, 4 littermates from each of 15 

litters for application of the experimental treatments. In Experiment 

III 60 rats were depleted of EFA for 45 days. From this population 

40 animals were selected for continuation in the experiment. 

On the 46th experimental day animals were randomly assigned to one of the 

six experimental groups in Experiment II or four experimental groups in Experi

ment III. Animals receiving 0, 1, 5, 10, 20, or 50 mg vitamin E supplementation/ 

day were designated 0-T, 1-T, 5-T, 10-T, 20-T, or 50-T, respectively. Figures 3 

and 4 detail the experimental design. Animals assigned to EFAD groups were 

killed on the 46th experimental day. Animals in groups 0-T through 50-T were 

lightly anesthetized with ether. A blood sample was taken from the orbital 

sinus. Each animal was then weighed and changed to a 20% saff lower oil diet (SO) 

and to one of the dl-crtocopheryl acetate supplements. Animals in groups 0-T 

through 50-T received the experimental treatment until the 91st experi

mental day, at which time they were sacrificed. 
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Figure 3. Design of Experiment II 
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Figure 4. Design of Experiment III 
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Purposes of Experiments 

Experiment I was undertaken to establish the length of time re

quired to deplete body stores of EFA to a target point of serum T/T > 

0.4. We wished animals to remain in good health and to show only the 

commencement of EFA deficiency. Experiment II was designed to observe 

the effect of graded levels of a-tocopherol supplementation on growth, 

body weight, food efficiency, erythrocyte hemolysis, serum and pulmonary 

FA composition, and pulmonary a-tocopherol stores. The purpose of 

Experiment III was to replicate the results of Experiment II on selected 

dependent variables, to provide a further increase in dose of o^^ 

tocopherol to provoke a response, and to assay PG synthetic rate in 

lung and serum. 

Treatment of Animals 

All animals were weanling male Wistar rats from the stock colony 

of the Department of Food and Nutrition, Iowa State University. The 

animals were housed in individual 1/2-inch wire mesh cages in a room 

maintained at approximately 25° and 45-55% relative humidity. In 

Experiment I the animals experienced the following light-dark cycle: 

1100-2300 hours dark, 2300-1100 hours light. In Experiments II and 

III the photoperiod was shifted slightly so the animals experienced 

light from 0100 to 1300 hours and darkness from 1300 to 0100 hours 

daily. These hours were selected to permit the animals entrance into 

the dark cycle, their active time, just after feeding and watering 

activities were completed. In this way the animals experienced the least 
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disruption of their resting phase and had fresh food and vitamins 

available at the onset of their active phase. Animals were provided 

fresh food every other day, vitamin supplements daily, and clean 

cages and water bottles weekly. Water-soluble and fat-soluble vitamin 

supplements were given in small glass dishes. After a few days animals 

had learned to consume these quantitatively within a few minutes fol

lowing administration. Food and distilled water were available ad libitum. 

The animals were weighed every other day. Food intake was determined 

every other day by collecting all spilled food and weighing it along 

with the uneaten food remaining in the diet jar. 

Diets and Supplements 

Composition of the essential fatty acid deficient (EFAD), control, 

and 20% safflower oil (SO) diets appears in Table 2. 

The water-soluble vitamin supplement was used throughout the course 

of all the experiments. All animals in all groups received 1.0 ml of 

the water-soluble vitamin supplement each day. Composition appears in 

Table 3. 

Fat-soluble supplements were measured into vitamin cups with 

calibrated droppers. Fat-soluble vitamin supplements were prepared by 

mixing weighed amounts of each vitamin in a small amount of appropriate 

oil. Oil was added to bring each supplement up to the weight pre

determined to provide proper daily dosage by the calibrated dropper. 

Tables 4, 5, and 6 show the fat-soluble vitamin supplements used in 

Experiment I, Experiment II, and Experiment III, respectively. To 
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Table 2. Composition of essential fatty acid 
and 20% safflower oil (SO) diets 

deficient (EFAD), control, 

% bv weight 
Ingredient EFAD Control SO 

Casein, vitamin 
free, test^ 26.0 26.0 26.0 

dl-methlonine^ 0.39 0.39 0.39 

Williams-Briggs modified 
mineral mix'^ 3.5 3,5 3.5 

Nonnutrltlve fiber^ 2.0 2.0 2.0 

Hydrogenated coconut oll^ 20.0 18.0 — 

Corn oll^ — 2.0 — 

Safflower oil^ — — 20,0 

Cornstarch® 48.11 48.11 48.11 

^U.S. Biochemical Corp., Cleveland, Ohio. 

^Grand Island Biological Co., Grand Island, New York. 

^Williams et al. (1968), Teklad Test Diets, Madison, Wisconsin. 

^Teklad Test Diets, Madison, Wisconsin. 

®Mazola, Best Foods, CPC International, Englewood Cliffs, New 
Jersey. 

^Pacific Vegetable Oils International, Richmond, California. 

^Clinton Corn Processing, Clinton, Iowa. 
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Table 3. Composition of water-soluble vitamin supplement 

Ingredient Dose/rat/day 

Thiamine HCl^ 29 Hg 

Riboflavin^ 39 MS 

Pyridoxine HCl^ 20 |Jg 

Folic acid^ 20 ng 

D-Ca-pantothenate^ 97 Hg 

p-amino-benzoic acid^ 97 pg 

Vitamin 0.2 pg 

Biotin^ 2.0 Mg 

Niacin^ 64 Mg 

i-Inositol* 2,4 mg 

Choline Cl^ 4.8 mg 

20% ethanol 1.0 ml 

^Grand Island Biological Co., Grand Island, New York. 

^ICN Pharmaceuticals, Inc., Cleveland, Ohio, 

^General Biochemicals, Inc., Chagrin Falls, Ohio (known as Teklad, 
Madison, Wisconsin, since 1975). 
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Table 4. Composition of fat-soluble vitamin supplement for Experi
ment I and for all EFAD groups 

Ingredient Dose/rat/day 

Vitamin 

dl-cy-tocopheryl acetate^ 

Retinyl palmitate^ 

Vitamin 

Tricaprylin^ 

10 pg 

1.0 mg 

17 

0.6 Mg 

34-44 mg^ 

Sigma Chemical Co., St. Louis, Missouri. 

^Teklad Test Diets, Madison, Wisconsin. 

'Grand Island Biological Co., Grand Island, New York. 

^Nutritional Biochemicals, Cleveland, Ohio. 

'Weight appropriate to calibration of dropper. 

avoid administering EFA, we used tricaprylin as carrier for fat-

soluble vitamins in EFAD. 

Food Efficiency Ratios 

Food efficiency ratios were calculated by dividing food intake for 

the period by weight gained during the period. 

ppR _ food intake (g) 
weight gain (g) 
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Table 5. Composition of fat-soluble vitamin supplements for Experi
ment II 

Dose/rat/day 
Ingredient 0-T 1-T 5-T 10 -T 20 -T 

Vitamin 10 PS 10 Mg 10 Mg 10 Mg 10 Mg 

dl- (y-tocopheryl acetate^ 1.0 mg 5.0 mg 10. 0 mg 20. 0 mg 

Retinyl palmitate^ 17 Mg 17 Mg 17 Mg 17 Mg 17 Mg 

Vitamin 0.6 ' Mg 0.6 Mg 0.6 Mg 0.6 Mg 0.6 M-g 

Corn oil*^ 40 
d 

mg 39 
d 

mg 35 
d 

mg 40 
d 

mg 30 
d 

mg 

^Grand Island Biological Co., Grand Island, New York. 

^Teklad Test Diets, Madison, Wisconsin. 

^Mazola, Best Foods, CPC International, Englewood Cliffs, New 
Jersey. 

^Weight appropriate to calibrated dropper used. 

Nonterminal Blood Sampling 

In Experiment I blood samples were taken from four control animals 

and 11 EFÂD animals on experimental day 22. Blood samples were taken 

from groups 0-T through 50-T in Experiments II and III on experimental 

day 46. Each animal was lightly anesthetized with ether. A 100 Hi 

glass capillary tube was carefully inserted behind the right eye into 

the orbital sinus, and An average of 1.2 ml whole blood was drawn into 

a graduated glass centrifuge tube chilled in an ice bath. Bleeding was 
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Table 6. Composition of fat-soluble vitamin supplements for Experi
ment III 

Dose/rat/dav 
Ingredient 0-T 1-T 50-T 

Vitamin 10 Mg 10 10 Mg 

dl-a-tocopheryl acetate^ 1.0 mg 50.0 mg 

Retinyl palmitate^ 17 m 17 Pfi 17 Pg 

Vitamin 0.6 ' VB 0.6 Mg 0.6 Mg 

Corn oil^ 55 
d 

mg 64 
d 

mg 100 mg^ 

^Grand Island Biological Co., Grand Island, New York. 

^Teklad Test Diets, Madison, Wisconsin. 

^Mazola, Best Foods, CPC International, Englewood Cliffs, New 
Jersey. 

height appropriate to calibrated dropper used. 

stopped at once by applying pressure to a cool moist cottonball over the 

eye. Blood was centifuged at 600 x g for 20 minutes at 4°. Serum was 

transferred to one-dram vials, flushed with nitrogen, and stored at 

-20° awaiting further analysis. 

Necropsy 

All the animals of Experiment I and all EFAD animals of Experiments 

II and III were killed on experimental day 46. The remaining rats were 

killed on experimental day 91. All were allowed to eat until 
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sacrifice by cervical dislocation^. 

Blood was taken immediately by heart puncture in the left ventricle. 

In Experiment I all the blood was placed in covered centrifuge tubes 

in an ice bath, and held po more than 30 minutes before further 

processing. Whole blood was centrifuged at ,600x g for 20 minutes at 4°. 

The serum was transferred to one-dram vials, layered with nitrogen, and 

stored at -20o until further analysis. In Experiment II one drop whole 

blood was added to 3.0 ml saline-phosphate buffer at room temperature 

for hemolysis determination and was held at room temperature no longer 

than 30 minutes before continuing the hemolysis analysis. The remaining 

blood was handled as in Experiment I. In Experiment III one ml of 

blood was placed in a cooled glass centrifuge tube and treated as in 

Experiment I. The remaining blood was immediately incubated at 37° 

for 10 minutes for PG analysis. At the end of incubation a 0.1 volume 

of 4.2 mM solution of aspirin in KPi buffer (pH 7.4) was added and the 

tube cooled in ice and centrifuged at 600x g for 20 minutes at 4°. 

Serum was transferred to a one-dram vial and stored at -20°. 

In all three experiments lungs were excised, weighed, immediately 

frozen in liquid nitrogen, sealed in plastic pouches, and stored at -20° 

until further analysis. In Experiment III the left lung was handled 

separately. Immediately upon removal the left lung was weighed, and 

2 
homogenized in 5.0 ml cold KPi buffer with a Brinkman polytron PCU-2-110 

at rheostat setting 5.5 for 60 seconds. The homogenate was incubated in 

^Cervical Dislocators, Inc., Wausau, Wisconsin, 

brinkman Instruments, Westbury, New York. 
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a shaking water bath at 37° for ten minutes. At the end of incubation 

2.5 ml of 42 mM aspirin in KPi buffer (pH 7.4) was added and the mixture 

stored at -20°. 

Chemical Analyses 

Lipid extraction 

Total serum lipid was extracted by the method of Sperry and Brand 

(1955), using 0.5 ml serum. The resultant extract was made up to a 5.0 ml 

volume in dry chloroform and stored under Ng at -20°. Total lung lipids 

were extracted by the method of Folch et al. (1957) , brought up to a 

5.0 ml volume in dry chloroform, and stored under N, at -20°. 

Methylation 

Both serum and lung lipid extracts were methylated by placing a 

2.0 ml aliquot of the extract in a screw-capped culture tube. Extract 

was evaporated to dryness at room temperature under a stream of nitrogen. 

Immediately 1.0 ml benzene, 1.0 ml methanol, and 1.0 ml 14% BFg-methanol^ 

were added. Contents were mixed by shaking briefly. Tubes were flushed 

with nitrogen and closed tightly with teflon-lined screw caps. Tube 

contents were heated in a boiling water bath for 30 minutes. Methyl 

esters were extracted by adding two volumes (4 ml) hexane and one volume 

(2 ml) distilled water. Tube contents were thoroughly mixed for ten 

seconds, then centrifuged 10 minutes at 1100 x g until layers were clearly 

^Applied Science Laboratories, State College, Pennsylvania. 



www.manaraa.com

56 

separated. The top layer was transferred to a 2-dram vial, flushed 

with nitrogen, capped, and stored at -20°. 

Gas chromatography 

The resultant fatty acid methyl esters were concentrated under 

nitrogen and warmed to room temperature before a 1.0 nl aliquot was in

jected into a Beckman^ GC 72-5 flame ionization gas chromatograph equipped 

2 
with two columns. Peak areas were determined by an Infotronics Auto

matic Digital Integrator Model CRS-208 on one column and a Columbia 

3 
Scientific Industries Supergrator-1 Computing Integrator on the other. 

The columns themselves were 6-foot, stainless steel, 1/8-inch diameter, 

packed with W-AW support, 100-120 mesh, and 10% cyano silicone-10 

liquid phase^. Conditions of operation were as follows: columns 180°, 

detector 250°, inlets 55°, line 55°, nitrogen (carrier gas) flow rate 

20 ml/min, make-up gas flow rate 60 ml/min, flow rate 45 ml/min, air 

flow rate 300 ml/min, full-scale amps = 1 x 10 Correction factors 

were developed using standards of known composition. Fatty acids were 

identified by comparison of their retention times with those of known 

standards^. 

^Beckman Instruments, Inc., Fullerton, California. 

2 
Infotronics Corp., Austin, Texas, 

3 
Columbia Scientific Industries, Dallas, Texas. 

^Alltech Associates, Arlington Heights, Illinois. 

^Applied Science Laboratories, State College, Pennsylvania. 
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Hemolysis 

The method for determining hemolysis was that of Draper and 

Csallany (1969). The only modification in the method was a shortening 

of the incubation time from four to three-and-a-half hours. We found 

that precisely the same results could be obtained with the shorter 

incubation time. Absorbance of the sample was determined on a Beckman^ 

2 
DU Spectrophotometer, Model 2400, equipped with an Update Instrument 

Digital Display Readout. 

Alpha-tocopherol 

The CK-tocopherol content of lung was determined by a modification 

of Bieri's (1968) procedure. The frozen lung was rapidly minced with 

stainless steel scissors and a randomized sample of approximately 0.5 g 

was placed in a screw-capped glass test tube containing 1.5 ml 8% 

ascorbic acid in 5 mM Na^EDTA, and 1.0 ml redistilled ethanol. From 

this point on, all procedures were performed in a darkened room, the only 

light coming from the hallway through a frosted glass panel in the door. 

The tube contents were layered with nitrogen, capped, and placed in a 

65° water bath. After five minutes 1.0 ml saturated KOH solution (made 

by adding 15 g KOH to 11 ml deionized, distilled water) was added. 

The tube contents were layered with nitrogen, capped, and placed in the 

65° water bath for 20 additional minutes. Several times during digestion 

and saponification, the tube was briefly shaken. At the end of 20 minutes, 

the tissue fully digested, the tube was placed in an ice bath. When 

^Beckman Instruments, Inc., Fullerton, California. 

Instruments, Madison, Wisconsin 
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cooled, the saponified mixture was extracted with 4.0 ml redistilled 

hexane three times for a pooled extract total of 12 ml. Three ml aliquots 

were transferred in duplicate to 15 ml ground glass-stoppered centrifuge 

tubes and evaporated to dryness under nitrogen at room temperature. The 

walls of the tube were washed down with progressively smaller volumes of 

benzene three times until all product was concentrated in the tip of 

the tube. This concentrate was quantitatively applied under a stream of 

nitrogen to a 20 cm by 20 cm glass plate. The plate was coated with a 

silica gel-sodium fluorescein solution of 250 microns thickness 

which was prepared by rapid mixing of 30 g silica gel and 60 ml of 

0.004% sodium fluorescein in distilled water. Plates were air dried 

one hour, placed in a 100° oven for two hours, and stored in a des-

sicator cabinet for use within two days. Immediately upon sample ap

plication, the plate was placed in a solvent tank containing benzene: 

ethanol (150:3 v/v) for about 60 minutes. Upon removal, the plate was 

flushed with nitrogen, the of-tocopherol spot located by ultraviolet 

lamp, and the spot immediately scraped into a centrifuge tube. Two ml 

2 
of freshly prepared 0.02% bathophenanthroline in redistilled ethanol 

were added and the tube contents vigorously mixed 20 seconds. The tube 

was centrifuged two minutes at 1100x g and the supernatant decanted. 

The silica gel was eluted a second time and eluates pooled. All proce

dures were performed under nitrogen, in the dark, as rapidly as possible 

to prevent ck^tocopherol oxidation. A two ml aliquot of eluate was 

^Brinkman Instruments, Westbury, New York. 

2 
G. Frederick Smith Chemical Co., Columbus, Ohio. 
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placed in a cuvette and 200 yl freshly prepared 0.03% FeCl^ in redis

tilled ethanol added. Absorbance of the reaction mixture, briefly 

stirred, was read at 534 nm after two minutes. All samples were 

analyzed on a Beckman^ DU Spectrophotometer, Model 2400, equipped with 

2 
an Update Instrument Digital Display Readout. Alpha-tocopherol content 

of the cuvette was determined by reference to a standard curve, and 

Of-tocopherol content of the tissue was calculated. 

Measurement of pros taglandins 

The level of prostaglandins present in serum and in lung homogenate 

after a ten-minute incubation period was determined by radioimmunoassay 

as described by McCosh et aX. (1976). The specific antisera, normal 

rabbit serum (NRS), and anti-rabbit gamma globulin (ARGG) used in the 

assays are described in the Appendix (Table 27) . Compositions of the 

three buffers used appear in the Appendix (Tables 28, 29, and 30). 

Range-finding experiments demonstrated the dilutions necessary to 

place the tissue and serum samples within the range of sensitivity of 

the assay. Accordingly, all serum samples were diluted 1:4 in PBS gel 

and pulmonary homogenates were diluted 1:100 or 1:10 in PBS gel. 

On the first day of each assay the appropriate antiserum (anti-

PGE^, anti-PGEg, etc.) was diluted with normal rabbit serum to a pre

determined, appropriate titer for the assay. Working dilutions of ARGG 

and NRS were mixed in a 1:1 ratio while the diluted antiserum and ARGG 

were also mixed in a 1:1 ratio. Both solutions were then allowed to 

^Beckman Instruments, Inc., Fullerton, California. 

2 
Update Instruments, Madison, Wisconsin. 
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pre-precipitate overnight (or 6-24 hours) at 4°. Appropriate dilutions 

of reagents varied and were determined for each batch. 

After the pre-precipitation incubation period each diluted sample 

was assayed in duplicate and two standard curves were determined con

currently with each assay set. Tubes were included in each assay to 

determine total counts/tube, background binding by NRS, and binding 

capacity of the antiserum. Assays were always conducted over ice and 

all reagents maintained at 4°. Each assay tube was prepared with 

sequential additions of PBS-gel, sample or standard, antiserum, and 

labelled prostaglandin. A representative protocol appears in the 

Appendix, Table 31. The tubes were shaken gently, wrapped tightly with 

parafilm, placed in a closed plastic bag and incubated at 4° for 12-36 

hours. After incubation each tube received 3.0 ml cold PBS and was 

centrifuged immediately at 8° at 2000 xg for 30 minutes. Supernatant 

was poured off and discarded. To the pellet was added 0.3 ml deionized, 

distilled water and 3.5 ml liquid scintillation counting cocktail^. Each 

2 
tube was capped, briefly mixed and counted in a Packard Tri-Garb Liquid 

Scintillation Spectrometer, C2425, in the % mode, for either 10minutes or 

10,000 cpm, giving an error of usually 2.0% or less. The data were analyzed 

by the radioimmunoassay computer program designed by Duddleson et al. 

(1972) to provide concentrations per ml original homogenate or serum 

for each sample. Corrections for cross reactivity were made using simul

taneous equations as proposed by McCosh et aj^. (1976). The fractional 

^Scintiverse, Fisher Scientific Co., Fairlawn, New Jersey. 

Packard Instrument Co., Downer's Grove, Illinois. 
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binding of PGE^ with PGE^-antiserum was 0.20 and PGE^ with PGEg-anti-

serum was 0.17. 

Statistical Analyses 

Treatment means, standard error of the means, t tests, analysis of 

variance, and linear regression were calculated via SAS computer pro

gramming. In Experiment II a randomized balanced incomplete block 

design was employed as described by Cochran and Cox (1957). See Appendix, 

Table 32. In Experiment III animals were placed in treatment groups 

according to a randomized complete block design. In both cases by 

analysis of variance assuming a linear model, we were able to separate 

genetic effects from treatment effects. A standard of P < .05 was 

applied to identify significant differences among groups. In Experi

ment II analysis of variance using both five and six group comparisons 

were made. In Experiment III analysis of variance using both three and 

four group comparisons were made. The six and four group comparisons 

permitted analysis of the effect of EFAD on dependent variables. The 

five and three group comparisons removed the effect of age differences 

and allowed straight comparison of o?-tocopherol affects. 
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RESULTS 

Analysis of variance (ANOVA) was performed on all dependent 

variables in Experiments II and III. Two types of analyses were run — 

one including and one excluding the EFAD group. Inclusion of the EFAD 

group allowed determination of the effect of fat source (FS) on de

pendent variables. Exclusion of the EFAD group permitted determination 

of the effect of Qf-tocopheryl acetate (T) on dependent variables. Where 

ANOVA indicated possible group differences, t-tests were conducted to 

isolate the specific groups affected. 

Feeding graded levels of dl-a-tocopheryl acetate with 20% safflower 

oil resulted in few statistically significant differences among groups. 

In the following presentation of results, therefore, differences will 

be indicated only when statistically significant or suggestive. 

Experiment I 

Body weight and food intake 

Mean body weights were calculated at two time points during the 

experiment — after 19 and after 45 days on the diets. After 19 days 

the EFAD group weighed 135 + 3g and the control 139 + 9g. After 45 

days the EFAD group averaged 301 + 8g and the control group 322 + llg 

(Table 7). The EFAD group weighed slightly, but not significantly, 

less. 

Weight gains over the first 19 days of experimental feeding were 

87 + Sg for the control group and 84 + 3g for the EFAD group. Weight 

gains for the succeeding period (experimental days 20 to 46) were 183 + 3g 
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Table 7. Body weights, weight gains, food intakes and food efficiency 
ratios. Experiment I 

Control EFAD 
(n =4) (n = 11) 

Body weight (g) 
19 day _ 
46 day 322 + 11 301 ± 8 
19 day 139 ±9^ 135+3 

Weight gain (g) 
Days 1-19 87 + 8 84 +3 
Days 20-46 183 +3 166+7 

Total food intake (g) 537 + 19 517 + 13 

FER 0.50 + 0.01 0.48 + 0.03 

^Mean + SEM. 

for the control group and 166 + 7g for the EFAD group (Table 7). 

Total food intake for the control group was 537 + 19g and for the 

EFAD group 517 + 13g. Calculated food efficiency ratios were 0,50 + 0.01 

and 0.48 + 0.03 for control and EFAD groups, respectively (Table 7). 

Serum fatty acid profile 

Fatty acid patterns were determined on serum samples taken at two 

time points during the experiment in order to monitor progress of the 

development of EFA deficiency. 

After 21 days sharp differences were beginning to appear between 

EFAD and control animals. On the EFAD diet serum palmltate, palmitoleate, 

stearate, oleate, and eicosatrienoate rose while linoleate and arachldonate 

declined. The saturated and monounsaturated fatty acids and their 

metabolic products became more pronounced gs the levels of essential 

fatty acids dropped (Figure 5). Palmltate levels in control and EFAD 
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Figure 5. Serum fatty acid patterns after 21 and 45 days of feeding 
control or essential fatty acid deficient diets. Experi
ment I 
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groups were 18.22 + 0.38% and 22.44 + 0.73% (p < .05). The differences 

between the two groups in level of stearate, oleate, linoleate and 

arachidonate were significant at p < .01. Oleate in control and EFAD 

groups was 10.19 + 0.38% and 20.02 + 0.36%, respectively. Arachidonate 

after only 21 days of EFA deficient diet was half of control levels, 

16.71 + 1.09% vs 35.75 + 3.57%. Eicosatrienoate, undetectable in the 

control group, was 4.42 + 0.80% in the EFAD group (p < .05, Table 8). 

Table 8. Serum fatty acid patterns after 21 and 45 days of feeding 
control or essential fatty acid deficient diets. Experi
ment I 

% of total fatty acids measured 
21 days 45 days 

Fatty acid Control EFAD Control EFAD 

16:0 18.22 ± 0.38* 22.44 + 0.73* 22.07 ± 0. 44 26.14 + 0.85* 

16:1 0 1.72 + 0.30* 1.25 ± 0. 24 1.93 ± 0.49 

18:0 19.53 + 0.62 22.59 t 0.45** 22.18 ± 0. 46 22.51 + 0.78 

18:1 10.19 t 0.38 20.02 + 0.36** 12.17 ± 0. 75 23.52 + 0.73** 

18:2w6 16.32 t 2.20 12.08 + 0.50** 17.01 + 0. 31 10.08 + 0.69** 

20:3w9 0 4.42 t 0.80* 0 5.38 + 0.30** 

20:4w6 35.75 ± 3.57 16.71 + 1.09** 25.32 + 0. 60 10.45 + 0.73** 

T/T 0 0.: 26 0 0.51 

^Mean + SEM. 

*t, p < .05. 

**t, p < .01. 
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After 45 days a similar pattern with minor differences appeared. 

Falmltate, oleate, and elcosatrlenoate were significantly higher In 

the EFAD animais than In controls, and llnoleate and arachldonate levels 

were depressed. Llnoleate level was 17.01 + 0.31% In the control group 

and 10.08 + 0.69% In the EFAD group (p < .01). The level of arachldonate 

In the control vs EFAD animals was 25.32 + 0.60% vs 10.45 + 0.73% 

(p < .01, Table 8). Differences In palmltoleate and stearate levels 

in the two groups disappeared. The extent of depression of EFA levels 

after 45 days was somewhat greater than after 21 days, although the 

characteristic EFA deficiency pattern was clearly established after only 

21 days of EFA depletion. No C20:3cu9 was detectable in EFA sufficient 

animals, while the level rose in EFAD animals as the depletion continued. 

T/T ratio 

Triene:tetraene ratios for control animals were zero at both time 

points because no elcosatrlenoate was detectable. After 21 days the 

T/T of the EFAD group was 0.26. After 45 days the T/T ratio had risen 

to 0.51. 

Subjective observations 

We observed no clinical signs of EFA deficiency. There was no 

difference in appearance of tall, skin, or hair of EFAD and control 

rats. 
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Experiment II 

Body weights, gains. and food intake 

Initial mean body weights among the groups at the commencement of 

the EFA depletion period ranged from 53 to 56g. At the end of the 

EFA depletion period animals were randomly assigned to experimental 

treatment groups. Analysis of variance confirmed no significant dif

ferences in body weight existed among groups. Mean body weights prior 

to application of the experimental dl-ovtocopheryl acetate doses ranged 

from 270 to 292g (Table 9). Final body weights were generally un

responsive to (y- tocopheryl acetate dose (Figure 6). Final mean body 

weights of animals receiving 0, 1, 5, 10, or 20 mg dl-0(-tocopheryl 

acetate/day were 456, 445, 479, 436, and 458g, respectively (Table 9). 

Experimental weight gain ranged from 156 + 9 to 187 + 9g (Table 9). 

Food efficiency ratios declined with age from a mean of 0.467 during 

days 1 to 46 to a mean of 0.161 during days 80-91 (Table 9). 

Serum fatty acid patterns 

At the end of the EFA depletion period serum fatty acid patterns 

were similar among groups. Mean linoleate levels were 9.56% to 12.69% 

while T/T ratios were 0.47 to 0.82 (Table 10). The linoleate level and 

T/T ratio of the EFAD group of Experiment I fell within these ranges. 

Thus, the EFA depleted animals of Experiments I and II can be considered 

to be of the same population. 

Dietary supplements of dl-Of-tocopheryl acetate from 0 to 20 mg/day 

had no effect on the levels of individual fatty acids in total serum 

lipids (Table 11). Mean linoleate levels were 34.05% for the 1 mg 
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Table 9. Body weights, weight gains, and food efficiency ratios. Experiment II 

Depletion 
period Experimental period 

Variable EFAD 0-T 1-T 5-T 10-T 20-T 

Initial body weight (g) 
(day 1) 54 + 1 56 + 1 55 + 1 56 + 1 53 + 1 54 +1 

Body weight at 
end of EFA depletion ̂ g) 
(45 days) 283 + 3 281 + 3 277 + 3 292 + 3 280 + 3 270 +3 

Body weight at 
end of experimental 
period (g) 
(91 days) - 456 + 10 445 + 10 479 + 10 436 + 10 458 + 10 

Experimental period 
weight gain (g) 
(days 46-91) - 174 + 9 168 + 9 187 + 9 156 + 9 187 + 9 

Depletion period 
FER 
(days 1-45) 0.462 0.462 0.479 0.471 0.466 0.462 

Early experimental 
FER 
(days 46-61) - 0.402 0.372 0.376 0.330 0.405 

Middle experimental 
FER 
(days 62-79) - 0.266 0.259 0.263 0.246 0.254 

^Mean + SEM. 
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Table 9. Continued 

Depletion 
period Experimental period 

Variable EFAD 0-T 1-T 5-T 10-T 20-% 

Late experimental 
FER 
(days 80-91) - 0.156 0.152 0.181 0.132 0.186 

ANOVA indicated no significant differences due to supplemental level of dl-a-tocopheryl 
acetate. 

Results of t-test: Experimental period weight gain, p < .10, group 10-T vs 20-T. 
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Figure 6. Dose-response curve of body weight at five a-tocopheryl 
acetate levels. Experiment II 
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Table 10. Serum fatty acid profiles at end of depletion period. Experiment II 

Fatty % of total fatty acids measured 
acid EFAD 0-T 1-T 5-T 10-T 20-T 

16:0 23.16 + 0.89^ 25.03 ± 1.03 26. 70 ± 1.03 23. 70 ± 1. 03 24.07 + 1. 03 26.34 + 1.03 

16:1 3.38 ± 0.45 2.90 ± 0.47 2. 96 + 0.47 2. 99 ± 0. 47 2.36 + 0. 47 2.86 + 0.47 

18:0 22.53 ± 1.08 21.45 ± 0.97 23. 20 + 0,97 23. 21 ± 0. 97 24.69 + 0. 97 22,91 + 0.97 

18:1 21.56 ± 0.91 20.44 ± 1.00 21. 31 + 1.00 20. 74 + 1. 00 18.81 + 1. 00 21,73 + 1,00 

18:2w6 10.46 + 0.81 10.83 ± 1.05 9. 56 + 1.05 11. 59 ± 1. 05 12.69 + 1. 05 10.39 ± 1.05 

18:3(u3 Trace Trace Trace Trace Trace Trace 

20;3cu9 6.05 + 0.67 7.31 + 0.66 6. 67 + 0.66 6. 70 + 0. 66 5.30 + 0. 66 6,05 + 0.66 

20:4w6 12.84 + 1.30 12.05 + 1.28 9. 59 ± 1.28 11. 06 + 1. 28 12.09 + 1. 28 9.70 + 1,28 

T/T 0.50 ± 0.11 0.59 ± 0.11 0. 82 + 0.11 0. 61 ± 0. 11 0.47 + 0. 11 0,67 ± 0.11 

ANOVA including all six groups showed no significant differences. 

^Mean + S EM. 
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Table 11. Serum total lipid fatty acid profiles at conclusion of Experiment II 

% of total fatty acids measured 
Depletion Experimental 

Fatty period period 
acid EFAD 0-T 1-T 5-T 10-T 20-T 

16:0 23.16 + 0.89® 14.65 + 0.98 15.08 + 0.98 14.91 ± 0.98 13.74 ± 0.98 14.96 ± 0.98 

16:1 3.38 + 0.45 0.04 + 0.01 0.06 + 0.01 0.04 + 0.01 0.05 + 0.01 0.05 + 0.01 

18:0 22.53 + 1.08 11.64 + 0.76 12.41 + 0.76 12.24 + 0.76 11.77 ± 0.76 11.89 + 0.76 

18:1 21.56 + 0.91 6.45 + 0.93 6.41 + 0.93 7.03 + 0.93 6.11 + 0.93 5.57 + 0.93 

18:2aj6 10.46 + 0.81 36.13 + 2.73 34,05 + 2.73 32.55 ± 2.73 36.89 + 2.73 33.95 + 2.73 

18:3m3 Trace 0.05 + 0.02 0.02 + 0.02 0 0 0 

20:3w9 6.05 + 0.67 0.17 ± 0.06 0.07 ± 0.03 0.13 + 0.06 0.24 + 0.10 0.15 + 0.06 

20Î4uj6 12.84 + 1.30 30.88 + 2.29 31.92 + 2.29 33.08 + 2.29 31.21 + 2.29 33.44 + 2.29 

T/T 0.50 + 0.11 0.01 0 0 0.01 0 

ANOVA showed no significant differences due to ortocopheryl acetate supplementation. 

®Mean + SEM. 
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dl-Qf-tocopheryl acetate group and 33.95% for the 20 mg group. Mean 

arachidonate levels were 31.92% for the 1 mg group and 33.44% for the 

20 mg group (Table 11). 

Refeedlng the EFA depleted animals with 20% SO lowered saturated 

and u)9 unsaturated fatty acids. Linoleate and arachidonate were in

creased threefold by SO refeeding (Table 11). Linoleate in the EFAD 

group was 10.46 + 0.81% and in the 1-T group was 34.05 + 2.73%. 

Arachidonate in the EFAD group was 12.84 + 1.30% and in the 1-T group 

was 31.92 + 2.29% (Table 11). 

Pulmonary fattv acid profile 

After EFA depletion C18:2w6 was 2.40 + 1.18% and C20;4u)6 was 

10.48 + 0.66% in lung (Table 12). Following refeeding with SO 

fatty acid composition of lung changed considerably, but values were 

not different due to dose level of crtocopheryl acetate (Table 12). 

The 1-T and 20-T groups had 31.81 + 1.98% and 30.93 + 1.98% linoleate, 

respectively, and 13.59 + 0.89% and 13.74 + 0.89% arachidonate. 

T/T ratios 

At the end of the 45-day EFA depletion period serum T/T was greater 

than 0.4 in all groups, ranging from 0.82 + 0.11 to 0.47 + 0.11 (Table 10). 

After the 45-day refeeding period with 20% SO and five levels of dl-o^ 

tocopheryl acetate all groups had normal T/T ratios in serum and pul

monary total lipids (Tables 11 and 12). The T/T ratios after feeding 

safflower oil and vitamin E ranged from 0.09 in lung to 0 in serum, 

similar to the 0 ratio in the control group of Experiment I (Table 13). 
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Table 12. Pulmonary total lipid fatty acid profile. Experiment II 

% of total fatty acids measured 
Depletion Experimental period 

Fatty period 0-T 1-T 5-T 10-T 20-T ANOVA 
acid EFAD FS T 

16:0 42.90+0.98® 30.93 + 1. 18 30. 25 ± 1. 18 31. 93 + 1. 18 32. 52 + 1. 18 30.92 + 1.18 P < .01 

16:1 1.33+0.72 0.12 + 0. 52 0. 15 ± 0. 52 0. 28 + 0. 52 0. 21 + 0. 52 0.30 + 0.52 

18:0 12.29±0.46 10.85 + 0. 55 10. 06 + 0. 55 10. 29 + 0. 55 10. 74 + 0. 55 10.35 + 0.55 

18:1 29.17+1.01 13.12 + 0. 70 13. 60 + 0. 70 13. 84 + 0. 70 13. 96 + 0. 70 13.37 + 0.70 P < .01 

18:2(1)6 2.40+0.28 30.67 ± 1. 98 31. 81 ± 1. 98 32. 43 + 1. 98 28. 96 + 1. 98 30.93 + 1.98 P < .01 

18:3w3 Trace Trace Trace Trace Trace Trace 

20;3u9 1.41+0.16 0.79 ± 0. 23 0. 55 ± 0. 23 0. 42 + 0. 23 0. 34 + 0. 23 0.36 + 0.23 P < .01 

20:4w6 10.48+0.66 13.51 + 0. 89 13. 59 ± 0. 89 13. 24 + 0. 89 13. 27 ± 0. 89 13.74 + 0.89 

T/T 0.14+0.02 0.09 + 0. 00 0. 04 + 0. 00 0. 03 + 0. 00 0. 03 + 0. 00 0.03 + 0.00 

^Mean + SEM. 
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Table 13. T/T ratios in serum and lung at end of depletion and refeeding periods. Experiment II 

EFAD 0-T 1-T 5-T 10-T 20-T 

After 45-day depletion 

Serum 0.50 + 0.11 0.59 + 0.11 0.82 + 0.11 0.61 + 0.11 0.47 + 0.11 0.67 ± 0.11 

Lung 0.14+0.02 ~ — — — — 

After 45-day refeeding 

Serum — 0.01 0 0 0.01 0.01 

Lung - 0.09 + 0.03 0.04 + 0.03 0.03 + 0.03 0.03 + 0.03 0.03 + 0.03 

T/T ratio of serum of control group in Experiment I was 0. 
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Hemolysis 

In all experimental groups percent hemolysis was normal, ranging 

from 4.4 + 1.2% to 7.6 + 1.1% (Table 14). Even a presumptively 

deficient level of vitamin E (0 dietary supplementation) did not re

sult in increased erythrocyte hemolysis (6.8 + 1.1%). No differences 

were seen at any a-tocopheryl acetate dose. 

Lung weight 

Animals in the 10-T group had smaller lungs than animals in other 

groups (Table 14). However, when lung weight was based on body weight 

(g lung/lOOg B.W.), there were no longer significant differences by ANOVA. 

Groups 1-T and 10-T differed significantly on a t-test (p < .01, 

Table 14). Values for lung weight per lOOg body weight ranged from 

0.41 + 0.02 for the lO-T group to 0.59 + 0.04 for the 1-T group. 

Pulmonary g- tocopherol 

Dietary or-tocopherol level was reflected in tissue «-tocopherol 

concentration. Accumulation of of-tocopherol in lungs of animals fed in

creasing amounts of a-tocopheryl acetate was statistically significant 

(Table 14). Values in Mg or-tocopherol/g wet lung tissue were 46.7 + 4.7 

and 63.2+ 4.7 for groups 1-T and 20-T, respectively. A linear regres

sion model fitting pulmonary a-tocopherol to dietary dl-of-tocopheryl 

2 
acetate was significant at p < .01, although the low r suggested a 

poor fit (Figure 7). 
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Table 14. Erythrocyte hemolysis, pulmonary weight and a-tocopherol 
content. Experiment II 

Depletion Experimental period 
period 
EFAD 

0-T 1-T 

RBC hemolysis 

a) 4.4 + 1.2* 6.8 t 1.1 5.9 + 1.1 

Lung weight (g) 1.38 ± 0.08 2.11 ± 0.17 2.54 + 0.17 

g lung/lOOg 
body weight 0.49 ± 0.03 0.46 + 0.04 0.59 + 0.04 

Pulmonary of-
tocopherol 
(P^/g lung) 58.9 ± 3.8 49.2 ± 3.8 46.7 ± 3.8 

Results of t-test : 

Lung weight. 1-T vs 10-T, p < 
EFAD vs 1-T, p < 

.05. 

.05. 

Pulmonary a-tocopherol, 1-T vs 20-T, p < .05. 

g lung/lOOg body weight, 1-T vs 10 -T, p < .01, 

^Mean + SEM. 



www.manaraa.com

78 

Experimental period 
5-T 10-T 20-T ANOVA 

FS T 

7.2 + 1.1 7.6 + 1.1 7.6 + 1.1 

2.30 + 0.17 1.78 + 0.09 2.26 + 0.23 p <.05 p < .05 

0.48 + 0.04 0.41 + 0.02 0.49 + 0.04 

59.0 + 3.8 55.3 + 3.8 63.2 + 3,8 < .05 
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Figure 7. Linear regression of pulmonary «-tocopherol on dietary 
a-tocopheryl acetate. Experiment II 
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Experiment III 

Body weights. gains, and food intake 

By design môan body weights of all groups at commencement and 

conclusion of EFA depletion period were similar to one another (Table 15) 

and to groups from Experiments I and II. 

During the experimental feeding of SO and graded levels of dl-œ-

tocopheryl acetate from 0 to 50 mg/day no differences in body weight 

appeared due to dose of vitamin E. The experimental time course was 

divided into early, middle, and late periods in order to monitor altering 

responses with progress of the experiment. At no time was there a 

statistically significant difference in body weight (Table 15). Weight 

gain during the late experimental period (days 83 to 91) tended to be 

reduced in the 50-T group, and total body weight showed a slight 

depression appearing only at the termination of the experiment (Figure 8). 

Final body weights ranged from 448 + lOg to 466 + lOg. 

A food efficiency ratio was determined only once during the experi

ment, in the middle experimental period (days 76-82). Food efficiency 

ratios for the 0-T, 1-T, and 50-T groups were similar with values of 

0.138, 0.116, and 0.102, respectively (Table 15). 

Serum ^atty ayid pattern 

At the end of the EFA depletion period the EFAD group was signifi

cantly different from the other groups in levels of palmitate and oleate 

(Table 16). The three groups to receive the experimental treatment, 

however, were uniform, with linoleate ranging from 5.38 + 0.55% to 

6.94 + 0.55%, eicosatrienoate 7.77 + 0.78% to 9.24 + 0.78%, and 
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Table 15. Body weights, weight gains, and food efficiency. Experiment III 

Depletion 
period 
EFAD 

Experimental period 
0-T 1-T 50-T 

Initial body weight (g) 
(1 day) 51+1 

Body weight at end of 
EFA depletion (g) 
(45 days) 297 + 5 

Body weight at end 
of experimental 
period (g) 
(91 days) — 

Depletion period 
weight gain (g) 
(days 1-45) 245 + 4 

Experimental period 
weight gain (g) 
(days 46-91) — 

Early experimental 
weight gain (g) 
(days 46-76) — 

52 + 1 

303 + 5 

466 + 10 

251 + 4 

163 + 9 

131 + 6 

51 4- 1 

298 + 5 

458 + 10 

246 + 4 

161 + 9 

135 + 6 

52 + 1 

297 + 5 

448 + 10 

245 + 4 

151 + 9 

134 + 6 

00 

Mean + SEM. 
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Table 15. Continued 

Depletion 
period Experimental period 
EFAD 0-T 1-T 50-T 

Middle experimental 
weight gain (g) 
(days 77-82) - 12 +3 11 +3 9+3 

Late experimental 
weight gain (g) 
(days 83-91) - 19 +2 15 +2 8+7 

FER 
(days 77-82) - 0.138 + 0.036 0.116 + 0.036 0.102 +0.036 

ANOVA indicated no differences among groups. 
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Figure 8. Body weights over time at three different doses of dl-a-
tocopheryl acetate. Experiment III 
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Table 16. Serum total lipid fatty acid profile at end of depletion 
period (after 45 days). Experiment III 

% of total fatty acids measured 
acid EFAD 0-T 1-T 50-T ANOVA 

16:0 29.77 ± 1.06* 26, 54 ± 1. 06 24.43 ± 1.06 25.36 ± 1.06 P < .05 

16:1 4.01 ± 0.67 3. 

+1 

0. 67 2.22 ± 0.67 2.59 ± 0.67 

18:0 18.58 ± 0.91 17. 28 ± 0. 91 17.46 ± 0.91 16.53 + 0.91 

18:1 24.04 ±1.34 27. 38 + 1. 34 29.24 ± 1.34 29.43 + 1.34 P < .05 

18:2w6 7.04 ± 0.55 6. 94 + 0. 55 5.38 ± 0.55 6.00 ± 0.55 

18:3u)3 Trace Trac< > Trace Trace 

20;3m9 6.57 ± 0.78 7. 77 + 0. 78 9.34 + 0.78 8.24 ± 0.78 

20:4w6 9.98 + 0.91 10. 84 + 0. 91 12.05 + 0.91 11.86 + 0.91 

T/T 0.70 + 0.09 0. 75 ± 0. 08 0.83 + 0.08 0.71 ± 0.08 

ANOVA included all four groups. 

^Mean + SEM. 

arachidonate 10.84 + 0.91% to 12.05 + 0.91%. The T/T ratios showed all 

four groups uniformly EF^ deficient with T/T = 0.70, 0.75, 0.83, and 

0.71 (Table 16). 

Level of daily dietary supplementation with dl-cif-tocopheryl 

acetate was of no significant effect on serum total lipid fatty acid 

profile on the 91st experimental day (Table 17). However, group 50-T, 

which received 50 mg dl-ortocopheryl acetate/day, tended to have a 

reduced level of serum arachidonate. Group 1-T had 25.02 + 1.76% 

C20:4w6 while group 50-T had 18.75 + 1.76%. This difference approached 
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Table 17. Serum total lipid fatty acid profile at end of Experiment 
III 

% of total fatty acids measured 
Depletion Experimental period 

Fatty acid period 0-T 1-T 50-T 

16:0 29.77 + 1.06® 20.23 + 1.69 22.47 ± 1.69 20.74 + 1.69 

16:1 4.01 + 0.67 0.56 + 0.28 0.72 + 0.28 0.84 + 0.28 

18:0 18.58 ± 0.91 13.62 ± 1.02 14.78 ± 1.02 14.51 + 1.02 

18:1 24.04 ± 1.34 7.26 t 0.64 6.78 + 0.64 7.72 + 0.64 

18:2iu6 7.04 + 0.55 30.20 + 2.32 22.86 + 2.61 30.96 + 4.19 

20:3(ju9 6.57 ± 0.78 4.44 + 0.97 7.36 + 0.97 6.49 ± 0.97 

20:4UJ6 9.98 + 0.91 23.69 + 1.76 25.02 + 1.76 18.75 + 1.76 

T/T 0.70 + 0.09 0.20 ± 0.04 0.28 + 0.04 0.31 ± 0.04 

ANOVA indicated no significant differences due to a-tocopheryl acetate 
supplementation. 

^Mean + SEM. 

significance at p <.05. The t-test indicated no difference in C18:2u)6for 

groups 1-T and 50-T. The mean T/T ratio of the EFAD group was 0.70. The mean T/T 

ratio of the SO refed groups was 0. 26 jf 0.04 (Table 17) , higher than the 0.03 

in the SO refed groups of Experiment II (Table 12). 

Pulmonary fatty acid profile 

Levels of daily dietary vitamin E supplementation had no signifi

cant effect on pulmonary total lipid fatty acid profile on the 91st 

experimental day (Table 18). Linoleate in group 1-T was 31.93 + 1.67% 

and in group 50-T 33.54 + 1.67%. Arachidonate in group 1-T was 
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Table 18. Pulmonary total lipid fatty acid profile. Experiment III 

% of total fatty acids measured 
Depletion Experimental period 

Fatty period 0-T 1-T 50-T ANOVA 
acid FS T 

p < .01 

p < .01 

p < .01 

p <.01 

p <.01 

p < .01 

^Mean + SEM. 

13.66 + 1.08% and in group 50-T 13.48 + 1.08%. The T/T ratios of the 

EFAD, 0-T, 1-T, and 50-T groups were 0.20, 0.06, 0.06, and 0.05, 

respectively. 

Another perspective on the distribution of fatty acids within the 

total lipids of a tissue is gained by calculation of ratios of selected 

fatty acids. VThile EFA deficiency was of significant effect in raising 

C18;l/C18;0, C20:4w6/C18:2w6, C20:3(d9/C20:4U)6 + C18:2UJ6 (T/T + D) 

in lung and serum, supplementation with oc-tocopheryl acetate had no 

effect on the pulmonary ratios (Table 19). Dietary a-tocopheryl acetate 

16:0 33.77 + 0.77 27.88 + 0.71 28.12 + 0.71 26.78 + 0.71 

16:1 6.37 ± 0.20 1.18 ± 0.19 0.92 + 0.19 0.90 ± 0.19 

18:0 14.71 ± 0.42 11.89 +0.39 11.63 + 0.39 11.36 + 0.39 

18:1 23.26 ± 0.54 12.54 + 0.44 12.91 ± 0.44 13.14 ± 0.44 

18:2oo6 3.72 ± 1.58 32.26 + 1.67 31.93 ± 1.67 33.54 ± 1.67 

18:3u)3 Trace Trace Trace Trace 

20:3da9 3.06 + 0.18 0.75 ± 0.06 0.79 ± 0.06 0.74 + 0.06 

20: 4u)6 14.94 + 1.00 13.39 ± 1.08 13.66 + 1.08 13.48 + 1.08 

T/T 0.20 0.06 0.06 0.05 
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Table 19. Selected pulmonary and serum fatty acid ratios. Experiment III 

Depletion Experimental period 
period 0-T 1-T 50-T ANOVA 
BFAD FS T 

Lung 

C18:l/C18:0 1. 63 + 0.09® 1.11 ± 0.08 1.15 + 0.08 1. 18 ± 0.08 P < .01 

C20:Au)6/C18:2u6 5. 36 + 0.35 ' 0.46 + 0.06 0.50 + 0.06 0. , 42 + 0.06 P < .01 

C20;3iu9/C20:4UJ6 
+ C18:2u6 
(T/T + D) 0. 17 ± 0.01 0.02 + 0.0 0.02 + 0 0. 02 + 0 P < .01 

Serum 

C18:l/C18;0 1. 37 ± 0.10 0.56 + 0.08 0.49 + 0.08 0. 64 ± 0.08 P < .01 

C20;4u6/C18;2œ6 1. 53 + 0.14 0.88 + 0.10 1.21 + 0.10 0. 73 + 0.10 P < .01 p < .05 

C20:3US/C20:4uj6 
+ C18;2ii6 
(T/T + D) 0. 40 + 0.03 0.08 + 0.02 0.15 + 0.03 0. 14 + 0.02 P < .01 

*Mean + SEM. 
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significantly decreased the serum C20;4u)6/C18; 2(u6 ratio (p < .05). The 

serum (U6 ratios for groups 1-T and 50-T were 1.21 + 0.10 and 0.73 + 0.10 

(Table 19). 

Lung weight 

As in Experiment II, when lung weight was expressed relative to 

body weight, vitaminE treatment showed no effect (ANOVA) , The proportion of 

lung to lOOg body weight was similar in both experiments (Tables 14 

and 20). The proportional lung values for the 1-T and 50-T groups of 

Experiment III were 0.52 + 0.04 and 0.47 + 0.04 (Table 20). 

Pulmonary o?-tocopherol 

Pulmonary o-tocopherol tended to increase with additional a-

tocopheryl acetate in the diet, although the increase was not statisti

cally significant. Concentrations of of-tocopherol in the lung for 

groups receiving 0, 1, or 50 mg dl-ortocopheryl acetate/day were 

54.4 + 3.7, 57.7 + 3.7, and 63.3 + 3.7 Mg/g lung, respectively 

(Table 20). Linear regression analysis revealed that although the 

data could be fitted to a straight line with positive slope, relating 

dietary and tissue crtocopherol, the slope of the line was not 

statistically different from zero (Figure 9). Thus, although there 

was an apparent trend toward pulmonary tocopherol accumulation, it 

was not significant. 

Serum prostaglandins 

The EFAD group had significantly reduced synthesis of PGE^ but 

not of PGEg or PGF^^ as compared to the SO refed groups. The average 
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Table 20. Pulmonary weight and a-tocopherol content. Experiment III 

Depletion Experimental period 
period 0-T 1-T 50-T ANOVA 
EFAD FS 

Lung 
weight (g) 1.42 + 0.18 2.04 + 0.19 2.38 + 0.19 2.07 + 0.19 p < .01 

g lung/lOOg 
body weight 0.48 + 0,04 0.42 + 0.04 0.52 + 0.04 0.47 + 0.04 

tocopherol 
level 
(Mg/g lung) 67.8 + 4.9 54.4 + 3.7 57.7 + 3.7 63.3 + 3.7 

^Mean + S EM. 
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Figure 9. Linear Linear regression model for pulmonary crtocopherol upon 
dietary or-tocophdry 1 acetate. Experiment III 
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PGEj^ value of the three experimental groups was twice that of the EFAD 

group. Mean PGE^ for group EFAD and group 0-T were 0.46 and 1.19 ng/ml 

(Table 21). Of the three PGs measured, PGFgQ, was present in the highest 

concentrations and PGE^ in the lowest in all groups. In group EFAD 

PGFgg was 9.66 + 2.61 ng/ml, PGE^ was 2.72 + 0.99 ng/ml, and PGE^ 

was 0.46 + 0.15 ng/ml. Comparison of groups 0-T, 1-T, and 50-T re

vealed no differences in synthesis of PGE^, PGE^, or PGFg^ in incubated 

whole blood (Table 21). 

Pulmonary prostaglandin synthesis 

Essential FA deficiency did not reduce PG synthesis in pulmonary 

horaogenate. On the contrary, PGIg synthesis was significantly higher 

in lungs of the EFAD group than in groups 0-T, 1-T, and 50-T. Sup

plementation with dl-o-tocopheryl acetate had no effect on PG synthesis 

in lung homogenate (Table 22). In groups 1-T and 50-T PGE^ was 

0.08 + 0.01 and 0.07 + 0.01 ng/mg, respectively. The levels of PGEg 

measured in groups 1-T and 50-T were 0.28 + 0.02 and 0.31 + 0.02 ng/mg. 

Prostaglandin F^^ in groups 1-T and 50-T was 7.61 + 0.94 and 7.58 + 

0.94 ng/mg lung. Prostacyclin in group 1-T was 1.84 + 0.16 and 

in group 50-T 1.86 + 0.16 ng/mg. The PGE^/PGE^ + PGFgg, ratio in lung 

was unaffected by dietary treatment (Table 22). Vitamin E supplementa

tion did not alter the balance among PGs of the one and two series. 
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Table 21. Prostaglandin synthesis in lO-minufce incubated arterial whole blood. Experiment III 

Depletion Experimental period 
period 0-T 1-T 50-T ANOVA 
EFAD FS T 

PGEi 
(ng/ml serum) 0.46 + 0.15* 1. 19 ± 0.15 0.69 ± 0.15 0.92 t 0.15 p < .05 

PGE2 
(ng/ml serum) 2.72 + 0.99 3. 73 + 0.99 5.50 + 0.99 4.41 + 0.99 

PGF2C 
(ng/ml serum) 9.66 + 2.61 14. 75 ± 2.61 14.23 ± 2.61 14.02 + 2.61 

PGEj^ 

PGEg + PGFga 
0.05 + 0.01 0. 10 + 0.03 0.07 + 0.01 0.06 + 0.01 

PGEj^ 

PGEg + PGFga 

^Mean + SEM. 
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Table 22. Prostaglandin synthesis in lO-minute incubated lung homogenate. Experiment III 

Depletion Experimental period 
period 0-T 1-T 50-T ANOVA 
EFAD FS T 

PGEi 

(ng/mg lung) 0.08 ± 0.01* 0.08 ± 0. 01 0.08 ± 0.01 0. 07 ± 0.01 

PGE2 
(ng/mg lung) 0.25 + 0.02 0.28 ± 0. 02 0.28 ± 0.02 0. 31 + 0.02 

PGF2a 

(ng/mg lung) 8.23 + 0.94 7.06 + 0. 94 7.61 ± 0.94 7. 58 + 0.94 

PGI2 
(ng/mg lung) 2.36 ± 0.16 1.65 ± 0. 16 1.84 + 0.16 1. 86 + 0.16 p < .05 

PGEi 

PGEg + PGFg^ 
0.01 0.02 0.01 0.01 

^Mean + SEM. 
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DISCUSSION 

Hypothesis 

Four disparate observations from past research form the basis for 

the present work. 

1. High PUFA diets may have deleterious effects. 

2. Level of dietary PUFA may influence PG synthesis. 

3. Vitamin E may inhibit PG synthesis in vitro. 

4. Vitamin E requirement is influenced by PUFA intake. 

Synthesis of these four ideas suggests that the deleterious effects of 

high PUFA diets may be mediated by altered PG synthesis coupled with a 

secondary vitamin E deficiency. An increase in dietary vitamin E might 

ameliorate the ill effects of high PUFA diets by moderating PG synthesis. 

The purpose of the present investigation was to test the interre

lationship of dietary vitamin E, dietary linoleic acid, and prosta

glandin synthesis. Alpha-tocopheryl acetate, one of the most stable 

forms of vitamin E, was used in vitamin supplements. A high dietary 

intake of safflower oil gave a rich source of linoleate. 

Model for Dietary Linoleate Research 

In order to observe the effects of dietary cy-tocopherol on in

gested C18;2(u6 rather than on endogenous 018:2(1)6, I attempted to reduce 

the contribution of tissue to metabolic PUFA pools and maximize the 

contribution of diet. Animals were maintained on an EFA deficient diet 

for 45 days to deplete tissue stores of 18;2(u6. Reid et £l. (1968) 

estimated that a young rat, fed ̂  libitum for 14 days, would have 
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10% of body weight as fat. This is admittedly a general figure, as 

composition of the diet, length of feeding period, and age of the rat would 

affect the value. Carlson and Arnrich (1978) estimated a 350g adult 

rat would have an average of 30% of body weight as lipid. According 

to their estimates, rats in this study weighing ca, SOOg at the end 

of the depletion period would have a body store of ca. 30-90g lipid. 

Although this fat is in various metabolic pools with varying turnover 

rates, one may use again the general rate of Reid et of 12% turnover/ 

day. Thus, 3-lOg fat is turning over daily. At the end of EFA depletion 

we found 10-12% linoleate in serum and 2-4% in lung. Coniglio 

et al. (1976) reported hepatic 18:2u)6 in EFA deficiency was 6.6% of 

total fatty acids. Using an average figure of 7% of body fat as 18:2u)6 

in EFA deficiency, the tissue contribution of metabolizable 18:2w6 was 

no more than 0.25-0.77g/day at the end of the depletion period. On a 

20% SO diet our rats were ingesting ca. 14g diet/day or 2.8g SO, which 

by our analysis contained 18:2m6 at 81% of total fatty acids. Thus, 

the dietary contribution of linoleate was 2.27g/day. At the commence

ment of the experimental phase, when the dietary fat was changed from 

hydrogenated coconut oil (HCO) to safflower oil (SO), the dietary 

contribution of 18:2u)6 to labile pools was four to ten times the tissue 

contribution. Towards the end of the SO feeding regimen, body stores 

of 18:2(u6 were high. Linoleate was 35% of serum total lipids and 30% 

of pulmonary total lipids. By calculations, therefore, the tissue 

contribution of C18:2u)6 was estimated to be 1.l-3.8g/day. Dietary 

contribution of C18:2m6 to labile pools still rivalled tissue contribu

tion. 
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Use of a 26% casein, 20% HCO diet produced biochemical but not 

clinical symptoms of EFA deficiency within 45 days. The EFA deficient 

rats appeared normal in all respects except in T/T ratio of serum total 

lipids. There was neither growth depression nor dermal abnormality in 

the EFA deficient rats. After only 22 days of an EFA deficient diet 

the T/T ratio of serum total lipids was already 0.26 as compared to 0 

for control animals. After 45 days the T/T ratio of serum total lipid 

was 0.51, just within the biochemical definition of EFA deficiency 

(>0.4). At the end of the 45-day EFA depletion period in Experiments 

II and III, the serum total lipid T/T ratios averaged 0.58 and 0.71, 

respectively. Three separate trials, depleting over 110 animals, 

demonstrated the efficacy and reproducibility of the EFA deficient 

diet to produce the desired population. 

Thus, it appears that a model for study of effects on dietary 

C18:2UJ6 has been successfully established. This model is composed 

of young rats who are indistinguishable from healthy control rats in all 

gross respects measured except in tissue stores of PUFA, The rats show 

no growth retardation, appetite depression, or dermal lesions that 

could complicate subsequent experimental treatments and measures. 

Effect of of-Tocopheryl Acetate on 

Body Weight, Growth, Food Efficiency 

Feeding a 20% by weight SO diet to weanling rats for 28 days has 

previously been associated with reduced growth rate and reduced energy 

efficiency (Higgins 1979). In Experiment II we found that levels of 
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dietary a-tocopheryl acetate from 0 to 20 mg/day had no significant 

effect on body weight, weight gain, or food efficiency after 45 

days of feeding. - These rats, however, were older than those of Higgins 

when the dietary regimen with 20% SO was started. At an age of 111 

days the rats weighed on the average 450g in the second experiment 

and 457g in the third experiment. Replication between experiments 

indicated consistent, reliable results. When graded levels of a-

tocopheryl acetate (0, 1, 5, 10, and 20 mg/day) were administered, 

no clear trend of effect on body weight appeared. Final weights were 

randomly scattered about the mean with no relationship to treatment. 

When the a-tocopheryl acetate supplementation was increased to 50 mg/ 

day in the third experiment, the final body weights of the high-vitamin E 

group tended to be depressed compared to the low-vitamin E group 

(Table 14). Although the effect was not statistically significant, 

it was beginning to appear only in the final days of the experiment. 

This late-appearing trend to growth depression suggests (1) the level 

of vitamin E in question — 50 mg/day — may have approached a toxic 

dose, and (2) the experiment ended too soon. Corrick (1969) found 

growth depression in rats fed over 75 lU a-tocopherol/day for ten weeks. 

Conditions in the present study were moderate by comparison and gave less 

dramatic results. The high-vitamin E supplement of 50 mg/day was 

approximately 3570 mg/kg diet. This is nearly 100 times the estimated 

requirement of th# laboratory rat or mouse (National Research Council 

1978). Any nutrient, given at such levels, could be considered poten

tially dangerous. It is possible the experiment ended before the effect 

was distinguishable. Future research might explore the long-tera 
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consequences of high-vitamin E supplementation. 

Body weight may mask subtle effects of diets and may be criticized, 

too, as a poor indicator of nutritive status (Morley 1976). A 

homogeneous population in regard to initial weight and depletion 

weight was used for further experimental applications. In the second 

experiment cx-tocopheryl acetate supplementation had no statistically 

significant effect on weight gain over the 45-day experimental period. 

Table 9 shows a scatter of gains and no clear trend with increasing 

dietary «-tocopherol. This suggests the reported weight gains are 

truly random, and a-tocopheryl acetate supplementation of 0 to 20 mg/ 

day did not modify weight gain. In the third experiment weight gain, 

although not statistically significant, appeared mildly depressed in the 

50 mg/day vitamin E group (Table 15). The division of overall weight 

gain into early, middle, and late periods suggests that the reduced 

growth rate, if genuine, came only late in the experiment. Again, one 

wonders lAat continuation of the feeding period might have revealed. 

The food efficiency ratio (FER) in Experiment III calculated during 

the middle experimental period (days 76-82), showed no statistically 

significant effect of dietary of-tocopheryl acetate, although as with 

body weight and weight gain, there was an apparent decline in FER with 

high vitamin E. As there was no significant depression in weight gain 

during the middle experimental period, the apparently reduced FER would 

be due to an increased food intake and decreased utilization. However, 

as no statistical evidence of experimental effect was evident, one 

must conclude that dietary vitamin E did not influence food efficiency. 
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Effect of Dietary a*-Tocopheryl Acetate on Hemolysis 

The percent of erythrocyte hemolysis is commonly used to assess 

vitamin E nutriture. Values of < 10% are considered to indicate 

adequacy of dietary vitamin E. The data indicate all six treatment 

groups had adequate a-tocopherol, and there was no increase in hemolysis 

with decreasing level of tocopherol supplementation (Table 14). The 

data indicate hemolysis to be an insensitive indicator of vitamin E 

intake. Severe deficiency would be signalled by this indicator, but 

subtle differences in a-tocopheryl acetate intake such as were em

ployed in Experiment II are not reflected in hemolysis results. On 

the one hand, increasing levels of c^tocopheryl acetate above a 

moderate (1.0 mg/day) intake were not accompanied by changes in percent 

hemolysis. This suggests around 6% hemolysis is a background level, 

resistant to reduction or improvement. Thus, hemolysis is useless as 

an indicator of vitamin E intakes above adequate. We agree with Mac

kenzie (1954) that above a critical level of serum tocopherol, there 

is complete protection against the hemolytic response. 

On the other hand, even the group receiving a zero vitamin E 

supplementation to the SO diet showed no perceptible increase in per

cent hemolysis. Although we expected this group to be vitamin E 

deficient, there is evidence they were not. In the semi-purified 

diet provided to the animals, only the SO could have been a source 

of vitamin E. The a-tocopherol content of SO is generally 0.34 mg/g 

oil (McLaughlin and Weihrauch 1979), although determination of the 

a-tocopherol content of our particular batch of SO revealed only half 
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as much a-tocopherol (0.112 mg/g oil). Discussions with the quality 

control manager of the SO manufacturer revealed the company used TBHQ 

as added antioxidant; tocopherol contents were believed low due to 

processing. Rats in these experiments, therefore, were receiving 

0.31 mg o^tocopherol/day from SO alone or 22 mg/kg diet. Although 

the diet itself was not altogether void of cv-tocopherol, the level 

present was presumptively deficient. Failing to observe symptoms of 

vitamin E deficiency, one must conclude that the minimal amount of 

Qf-tocopherol in the SO used was adequate to delay appearance of deficiency 

symptoms. 

The purpose in the present investigation was not to produce a 

vitamin E deficiency, in any case. The 0-T group was included as one 

part of a wide spectrum of levels of a-tocopheryl acetate supplementa

tion. Although there was no intention to produce vitamin E deficiency, 

the results suggest two measures that would be useful in such a 

purpose: (1) use of a more completely stripped SO, treated with non-

biological antioxidants, and (2) continuation of the 0-T regimen 

exceeding 45 days. 

The method of hemolysis analysis herein employed is based on 

spontaneous hemolysis in saline-phosphate buffer rather than the older 

dialuric acid method. The former method is more sensitive than the 

latter (Draper and Csallany 1969). Aftergood and Alfin-Slater (1978), 

using the Draper and Csallany method, reported RBC hemolysis of rats 

fed 1.0 mg/day or 5.0 mg/day a-tocopherol for 12 weeks was 4,5 + 2.3% 

and 3.8 + 1.4%, respectively. Comparable values from the present 

study are 5.9 + 1.1% and 7.2 + 1.1%, indicating agreement with Aftergood 
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and Alfin-Slater that increasing o-tocopherol was of no significant 

benefit in lowering erythrocyte hemolysis. 

Although statistically not significant, the lowest RBC hemolysis 

value occurred in the EFAD group. To our knowledge hemolysis per se 

has not previously been measured in EFA deficiency. A group of in

vestigators reported that osmotic resistance of erythrocyte membranes, 

measured by dropping whole blood into NaCl solutions of varying concentra

tions, was no different in EFA deficiency or adequacy (Bohles ejt al. 

1979). Another study showed that rabbit RBCs were resistant to peroxida-

tive hemolysis until arachidonate was added to the medium (Brin et 1974). 

The rabbits were not EFA deficient, although they were vitamin E de

ficient. One cannot conclude with assurance that in a vitamin E suf

ficient state, reduced PUFA would make the RBC membranes more stable, 

although the results indicate that is possible. 

A reduced hemolytic response may be explained in at least two 

ways. (1) The EFAD group was 6 weeks younger than the other treatment 

groups. Thus, any difference observed between EFAD and the other 

groups may be an age rather than diet difference. Caution should be 

employed in making any direct comparisons. The age-related studies 

reported earlier show greater hemolysis in the young, but that is thought due 

to reduced cï-tocopherol stores in the young (Gordon and Nitowsky 1956). 

Whether age, independent of of-tocopherol content of the body, af

fects hemolysis is unclear. (2) Hemolysis is a result of fragile red 

blood cell membranes, and membrane integrity depends in part upon 

structural lipids. Current theory holds that membranes, rich in 

PUFA, are structurally sound as long as the PUFA remains unoxidized. 
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If peroxidation occurs, the membrane is disrupted and hemolysis potential 

is increased. Alpha-tocopherol, as an antioxidant, can prevent the 

loss of membrane integrity. In EFAD it is possible (1) that membranes 

are depleted in PUFA, (2) that the ratio of E:PUFA is increased, (3) that 

the remaining scarce PUFA are more vigilantly protected from peroxida-

tive damage. 

Effect of Diet on Lung Weight 

Size of the lung was affected by a-tocopherol supplementation. 

In Experiment II animals in the experimental group receiving 10 mg dl-

of-tocopheryl acetate/day had significantly smaller lungs than animals 

in all other groups (Table 14). This is an intriguing and puzzling 

observation. Experimental group 10-T was a maverick on several variables 

measured. This group had the highest hemolysis value, lowest food 

efficiency, and lowest weight gain of all experimental groups refed 

with SO and graded levels of a-tocopheryl acetate. Group 10-T also 

had lower pulmonary C18;2iu6 and higher C16:0 than the other groups 

at the conclusion of the experiment. Initial body weight and weight 

at end of EFA depletion were not different from the other groups (Tables 

9 and 14). Serum fatty acid profile of group 10-T was not different 

from the other groups at the end of depletion (Table 10). Thus, as far 

as can be known, no selection bias accounts for the data obtained 

for group 10-T. The differences were not large enough to be 

statistically significant by ANOVA or by t-tests but that this group 

deviated consistently from all other groups on so many variables 
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suggests something unique about the group. That the lungs were 

significantly smaller in group 10-T than in the other treatment groups 

may partially explain the poor showing on indices of health. A 

limited pulmonary capacity may restrict growth and general well-being. 

When lung size was considered relative to body weight (Table 14), 

groups 10-T and 1-T differed significantly. 

If the treatment group receiving 20 mg o-tocopheryl acetate/day 

had responded in a similar manner to the group receiving 10 mg/day, 

then one may have concluded the effects were due to excessive a-

tocopherol Ingestion. That is not the case. A basic assumption in 

nutrition science is that every nutrient has a continuous effect upon 

the organism. As graphically portrayed in Figure 10, both deficiency 

and excess of a nutrient are accompanied by deleterious effects, while 

a middle, moderate range is associated with optimum functioning. If, 

for example, the nutrient in question were EFA and the response were 

growth, we would observe at suboptimal intakes a depressed growth, at 

optimal intakes maximum growth, and at excessive intakes depressed 

growth. Thus, in the case of a-tocopherol we would also expect to ob

serve a continuous effect of increasing dose, a uniformly progressive 

decline or increase in lung weight, or weight gain, for example. What 

we report, however, is a break in the continuous curve. While it is 

conceivable that increasing a-tocopheryl acetate intake from 1 to 5 

to 10 rag/day could lead to deleterious effects at the highest dose, 

what is inconceivable, given our current assumptions, is that a further 

increase to 20 mg/day should reverse the trend.' The continuous ef

fect model is a simplified statement of nutrient effect ignoring the 
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reality that nutrients act in concert. The observations of group 10-T 

may be strictly random but may on the ether hand result from an un

defined nutrient interaction. 

Pulmonary a-Tocopherol 

Results show that increasing levels of a-tocopheryl acetate in the 

diet were associated with slightly increased concentrations of a-

tocopherol in lung tissue. The increase in daily supplementation from 

1 mg to 20 mg was accompanied by a rise in lung as tocopherol from 46.7 

Pg/g to 63.2 pg/g lung. Although the increased pulmonary concentration 

was statistically significant, it was only a modest response to large 

dietary increases. Linear regression showed that a straight line was 

a poor fit to the data, primarily because of wide variation within 

groups. In the third experiment dietary a-tocopheryl acetate was 

raised to 50 mg/day. Pulmonary content of o;-tocopherol under this 

treatment was 63.3 pg/g lung, no higher than when intake was 20 mg/day 

in Experiment II. Furthermore, the third experiment failed to show 

any statistical difference among treatment groups in pulmonary a-

tocopherol content. 

The effect of dietary o*-tocopheryl acetate on pulmonary a-

tocopherol accumulation is minor at best and straitly restricted. 

Although increased intake of a-tocopherol results in apparent ac

cumulation in plasma and liver, the lung is less responsive (Aftergood 

and Alfin-Slater 1978). This finding is consistent with data related 

to lung composition. The total fat content of pulmonary tissue is 
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relatively small. But more important, 50% of pulmonary lipid is in the 

phospholipid fraction, and this fraction is of a relatively fixed 

composition, somewhat resistant to dietary changes (Higgins 1979). A 

small nonphospholipid pool in lung suggests a limited ability to ac

cumulate and store fat-soluble vitamins. 

Witting (1975) reported ^-tocopherol was present in tissues largely 

in the subcellular membranes; therefore, incorporation and storage of 

a-tocopherol in tissues would be severely limited. Bieri et al. (1978) 

fed rats graded levels of crtocopheryl acetate from 30 to 50 mg/kg diet 

for 8 to 10 weeks and found no change in the cy-tocopherol content of 

lung. 

Comparisons of pulmonary tocopherol data from the present investiga

tion with earlier published results show close agreement with Aftergood 

and Alfin-Slater (1978) under similar conditions. That Evarts and 

Bieri's (1974) values of pulmonary ^tocopherol are much lower than After-

good and Alfin-Slater ' s and the results herein may be due to two factors. 

(1) Evarts and Bieri did not supplement the corn oil diet with vitamin 

E as did the others. (2) Evarts and Bieri reported a value based on 

only two rats. Our results with over 100 rats indicated wide varia

tion in the rat population and high error in a small sample. 

It is evident from the SEM that a relatively high error persists 

in Of-tocopherol measures (Tables 14 and 20). Such error is due to at 

least two factors: (1) a genuinely wide biological variability in the 

population and (2) error in the method. That the latter is partly to 

blame became clear as refinement of the method occurred during use. 

Only in the hands of a skilled analyst can the potential for variation 
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Table 23. Comparisons of literature values for pulmonary a<-tocopherol in rats 

Evarts and 
Bieri 
(1974) 

Âftergood and 
Alfin-Slater 

(1978) 
Work 
herein 

Pulmonary a-tocopherol 
(Hg/g lung) 21.6 56.0 + 5.6* 59.0 ± 3.8* 

Diet 20% corn oil 15% corn oil 
5 mg Of-tocopherol/day 

20% SO 
5 mg tocopherol/day 

Length of feeding 8-12 weeks 6 weeks 6 weeks 

^Mean + S EM. 
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be reduced. Alpha-tocopherol, unstable, readily oxidized by air, light, 

heat, was sensitive to even slight differences in sample handling and 

preparation, as indicated by duplicate disagreement. 

In general, levels of of-tocopherol in lung reported here are similar 

to those reported by others, and little pulmonary retention of exces

sive a-tocopherol intakes occurred. 

When EFAD animals are compared to the other treatment groups in 

Experiments II and III, the EFAD animals had a relatively high 

pulmonary «-tocopherol content despite an of-tocopheryl acetate intake 

of only 1.0 mg/day and despite an age difference of six weeks com

pared to other treatment groups. As has previously been mentioned, 

a-tocopherol levels are generally low in very young animals. At the 

ages in these experiments, 86 days old (EFAD group) vs 111 days old 

(SO and of-tocopheryl acetate treated groups), thé age effect on tissue 

CÏ-tocopherol content is not known. In the absence of a proper control 

group for comparison with the EFAD group one cannot make clear evalua

tion of the EFAD results. Nevertheless, it appears that EFAD animals 

have increased pulmonary cy-tocopherol (Tables 14 and 20). Although 

plasma «-tocopherol was not measured, the high pulmonary «-tocopherol 

values are consistent with the trend towards reduced hemolysis seen 

in EFAD animals. In a state of EFA deficiency (1) the organism might 

compensate for EFA scarcity by accumulating protective molecules, or 

(2) reduced substrate for lipid oxidation might diminish use of the 

vitamin and enhance accumulation. 
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Serum Fatty Acid Pattern 

Rats entered the experimental phase having been uniformly depleted 

of EFA. Mean serum T/T ratios in Experiments II and III ranged from 0.47 

to 0.83; all within the biochemical definition of EFA deficiency. Serum levels 

of C18: 2w6 and C20:4(i)6 were reduced to half of control levels (Table 8) . At this 

juncture all rats to be continued in the experiment were placed on a 

20% by weight SO diet, with 31% of calories supplied by C18:2iu6. The 

excess C18;2u)6 intake was accompanied by 0, 1, 5, 10, or 20 mg/day 

dl-Of-tocophery 1 acetate in Experiment II or by 0, 1, or 50 mg/day dl-

of-tocophery 1 acetate in Experiment III. The levels of the a-tocopheryl 

acetate in supplements in Experiment II had no statistically significant 

effect on any of the fatty acids measured. Apparently vitamin E did not 

influence the conversion of dietary linoleate to arachidonate. Data 

from Experiment III partially confirm these results. Statistical 

analysis shows dietary «-tocopherol level did not affect serum fatty 

acid profile (Table 17). Closer examination suggests that, despite 

lack of statistical significance, the 50 mg/day dose of vitamin E 

tended to elevate serum C18:2(u6 and lower serum C20:4u)6. Linoleate in 

groups 0-T and 50-T was 22.86 + 2.61% and 30.96 + 4.19%. Arachidonate 

in groups 1-T and 50-T was 25.02 + 1.76% and 18.75 + 1.76%, respectively 

(Table 17). 

Expression of the relationships among fatty acids by means of 

ratios enables one to see more clearly the effects of the a-tocopherol 

supplementation (Table 19). Essential FA deficiency significantly 

elevated the C18:l/C18;0 ratio, the C20:4w6/C18:2w6 ratio and the 
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C20:3(1)9/020;4(1)6 + C18:2(o6 (T/T + D) ratio. These ratios reflect the 

A9, Û6 and As desaturase activities (Rivers and Hassam 1975). Eleva

tion of all three ratios in the EFAD groups suggests enhanced desaturase 

activities. Removal of the EFAD group from comparison and consideration 

of 0-T, 1-T, and 50-T suggests that the group of rats receiving the 

high vitamin E dose had a statistically significant reduction in 020:4(1)6/ 

018:2(1)6 ratio, although the other two ratios were unaffected. A re

duced 020:4(1)6/018:2(1)6 ratio suggests that excessive vitamin E intake 

altered the balance among these two fatty acids. Calculation of 020:4(1)6/ 

018:2(1)6 ratios from serum data of Experiment II yielded values of 0.85, 

0.94, 1.02, 0.85, and 0.94 for the 0, 1, 5, 10, and 20 mg/day supple

mented groups. Although 20 mg/day vitamin E had no significant effect 

on serum FA profile, 50 mg/day did alter the relative amounts of 018:2(1)6 

and 020:4u)6 (Table 19). The mean 020:4(1)6/018;2u)6 ratios in Experiment 

III were 1.21 for the 1-T group and 0.73 for the 50-T group (p < .05). 

As 020:4(1)6 is mostly of endogenous origin, this finding suggests exces

sive levels of vitamin E may hinder the conversion of 018:2(1)6 to 020:4u)6, 

perhaps through influence on A6 desaturase. Another possible explanation 

is that excess a-tocopheryl acetate protected one fatty acid from oxida

tive destruction more effectively than the other. 

The observation that 20 mg/day vitamin E supplementation did not 

affect serum fatty acid profiles, while a 50 mg/day dose did produce 

a change, is consonant with the findings on body weight. A dose of 20 mg/ 

day did not depress growth (Table 9), while 50 mg/day began to depress 

growth at the end of the experimental period (Figure 8). One concludes 

that vitamin E intakes up to 40 times the requirement may not be 
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deleterious to the rat, but Intakes at 100 times the requirement may 

be harmful. This conclusion is based, of course, on only two measures 

which may be unrelated and may be unimportant to overall health and 

well-being. 

Pulmonary Fatty Acid Pattern 

Essential FA deficiency produced a fatty acid pattern in lung 

similar to, but less pronounced than, the pattern in serum. In Table 24 

serum and pulmonary fatty acids in the EFAD group of Experiment II are 

compared. Lung has a much higher relative amount of C16;0 than serum, 

which is explicable by the contribution of pulmonary surfactant. Lung 

has much lower relative concentration of C16:l, C18:0, C18:2cu6, and 

C20;3u)9 and a slightly lower proportion of C20:4cu6 than serum. Lung 

has a somewhat higher proportion of C18:l than serum. The T/T ratio 

of EFAD lung lipids does not approach the value apparent in serum 

lipids, suggesting lung tissue is resistant to EFA depletion. 

The pulmonary level of C20:4(Ju6 was similar to the serum level, 

but C18:2œ6 was nearly fivefold lower in lung than in serum. Clearly, 

EFA depletion has made inroads, although the simple T/T ratio masks the 

effect. In Experiment II the serum total lipid T/T ratio was 0.47, 

while the pulmonary total lipid T/T ratio was 0.14. In Experiment 

III the pulmonary total lipid T/T ratio was 0.20. Pulmonary C18;2tu6 

was again much lower than serum C18:2(u6. In general, replication of 

pulmonary fatty acid patterns was good between Experiment II and 

Experiment III EFA depletions. 
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Table 24. Serum and pulmonary fatty acid profiles after 45 days of 
EFA depletion. Experiment II 

Fatty 
acid Serum Lung 

16:0 23.16 ± 1.03* 42.90 + 0.98 

16:1 3.38 ± 0.47 1.33 ± 0.55 

18:0 22.53 ± 0.97 12.29 ± 0.53 

18:1 21.56 ± 1.00 29.17 ± 0.32 

18:2u)6 10.46 ± 1.05 2.40 ± 1.18 

18:3m3 Trace Trace 

20:3cu9 6.05 + 0.66 1.41 ± 0.19 

20:4uu6 12.84 + 1.28 10.48 ± 0.10 

T/T 0.47 0.14 

^MEAN + SEM. 

A more complete description of tissue fatty acid patterns than 

T/T ratio alone gives may be obtained using three additional fatty 

acid ratios (Table 19). Essential FA deficiency elevated the C18:l /C18;0 

ratio compared to essential fatty acid sufficiency. This ratio identi

fies an enhanced desaturase activity which, in a deficiency of PUFA, 

reflects an attempt to produce unsaturated fatty acids from the 

materials at hand. The C20:3M9/C20:4W6 + C18;2oj6 (triene/tetraene + 

diene, T/T + D) ratio is also elevated in lung in EFA deficiency. This 

ratio provides a more comprehensive statement about EFA status than the 

T/T ratio for the former also accounts for tissue depletion or retention 

of C18:2AJ6. Serum has a fourfold higher T/T ratio than lung in EFA 
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deficiency, \^ile lung is more depleted of C18:2cu6 than is serum. 

Thus, when these two observations are combined in one ratio, the values 

are 0.40 and 0.17 for serum and lung, respectively. The EFA status of 

the two tissues is closer than the T/T had indicated (Table 25). Al

though the lung is still conservative of PUFA in the face of EFA 

deficiency, the effects of the lack of dietary PUFA are clearly evi

dent . 

Table 25. Comparison of indices of EFA deficiency in serum and pul
monary total lipids. Experiment III 

Serum Lung Serum/lung 

T/T 0.66 0.20 3.3 

T/T + D 0.40 0.17 2.4 

In Experiment II graded levels of dietary crtocopheryl acetate 

had no significant effect on fatty acid pattern in pulmonary total 

lipid. One has to conclude that dietary a-tocopheryl acetate intakes 

up to 20 mg/day are of no influence on any of the fatty acids measured. 

Other investigators have reported similar results (Miller and White 1975, 

Schoene and Lehmann 1978) , Donovan and Menzel (1979) and Donovan et al. (1977) 

fed Qf-tocopheryl acetate at 105 mg/kg diet and found no effect on mouse 

pulmonary fatty acid composition. We provided a-tocopheryl acetate at 

1420 mg/kg diet and still found no change in rat pulmonary fatty acid 

profile due to excess tocopherol. Even when o^-tocopheryl acetate sup

plementation rose to 50 mg/day or 3750 mg/kg diet, no statistically 

significant differences appeared in C18:2UJ6 or C20:4IU6 levels in lung 
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(Table 18). The C20:4(u6/C18; 2cu6 ratio showed no difference in rela

tive amounts of U)6 fatty acids. The animals receiving 50 mg vitamin E 

daily had relatively no less C20:4u6 and relatively no more C18:2m6 

in pulmonary total lipids than animals receiving 1 mg vitamin E daily 

(Table 19). This similarity in relative amounts of C18;2u)6 and C20:4(u6 

in lung total lipids despite vitamin E supplement contrasts with the 

result in serum. While in serum dietary vitamin E seemed to alter the 

balance of C18:2a6 and C20:4ou6, the evidence does not support a similar 

conclusion for lung. Possibly the tissue difference arises from cr 

tocopherol content of the tissues in question. Although serum a-

tocopherol was not measured, there is evidence that serum vitamin E 

rises in response to diet (Lehmann et 1977a, Aftergood and Alfin-

Slater 1978). Measures of pulmonary (%-tocopherol suggest that lung 

has only a limited ability to accumulate vitamin E. The lung, there

fore, may be shielded from effects of excess vitamin E intake. 

The data do not support the conclusion that excess of dietary 

vitamin E has an influence on pulmonary fatty acid pattern. Many 

investigators have shown that a deficiency of vitamin E is associated 

with a decline in C18:2UJ6 and a rise in C20:4UU6 (Witting and Horwitt 

1967, Lee and Barnes 1969). As yet, an excess of vitamin E has not 

been associated with any alteration in fatty acid profile. Other 

investigators have used moderate vitamin E supplementation and for 

relatively short feeding periods. Donovan and Menzel (1979) fed 

at most 105 mg dl-a-tocopheryl acetate/kg diet for six weeks, while 

we fed 3750 mg dl-o-tocopheryl acetate/kg diet for six weeks. A trend 

to growth depression appeared only in the final two weeks of Experiment 
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III. Failure of others to observe effects of a-tocopheryl acetate dose 

may be due to (1) too short an experimental period, (2) too subtle and 

too moderate a difference in vitamin E treatment, (3) insulation of 

lung or other tissue from excess vitamin E intakes, or (4) absence of a 

genuine effect of vitamin E on the variables considered. The results 

do not provide the final answer but do suggest possibilities that 

ought to be more fully studied before a firm conclusion can be drawn. 

Prostaglandin Synthesis 

A reduction in PG synthesis has been observed in EFA deficiency. 

Our results also suggest that whole blood PG synthetic rate was de

pressed in EFA deficiency. Conçarisons of group EFAD with the other 

three experimental groups are made with the awareness of an age dif

ference. The EFAD group was six weeks younger than the 0-T, 1-T, and 

50-T groups. Glenn et al. (1972) reported that PG synthesis increased 

with age. Thus, the data may reflect an effect of age rather than diet. 

Nevertheless, support for reduced PG synthesis in EFA deficiency is 

found in work by Vincent et al. (1974), Parnham et (1979), Weston 

and Johnston (1978), and others. An apparent reduction in synthesis 

of PGEg and PCFg^, in serum was not statistically significant but 

reduced synthesis of PGE^ in serum was significant (Table 21). 

Fine et al. (1980) found that altering dietary P/S ratio from 0.4 to 

5.5 had no effect on PGFg^ and PGE^ synthesis in lO-minute Incubated 

whole blood. A general trend of increased PGE^ synthesis with in

creasing P/S ratio was seen. Our results support these findings. 
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The significant reduction in serum PGE^ and the less pronounced 

depression of serum PGE^ and by EFA deficiency are a logical 

consequence of availability of fatty acid precursors. Comparing the 

EFAD group with the three SO groups reveals C18:2w6/C20:4w6 ratios of 

0.71 for the former and 1.25 for the latter. What these ratios show 

is that the amount of C18;2cu6 relative to C20:4tu6 is reduced in 

serum in EFA deficiency. Although relative concentrations of both 

C18;2cu6 and C20:4w6 decline in EFA deficiency, C18:2u)6 drops lower than 

C20:4u)6, As linoleate is precursor to PGs of the one series and 

arachidonate is precursor to PGs of the two series, the pattern of PG 

depression in Table 21 is precisely as expected. Essential FA deficiency 

depresses synthesis of PGs of the one series more than it depresses 

synthesis of PGs of the two series. 

Although EFA depleted, the animals exhibited a smaller reduction 

in C18:2u)6 and C20:Au)6 in lung than in serum. Lung was mildly protected 

from the effects of EFA deficiency, depleting slowly, as evident in both 

the T/T ratio and the T/T + D ratio. A known inhibitor of PG synthesis, 

C20:3ai9 was lower in lung than in serum (Tables 17 and 18). Thus, less 

depression of PG synthesis occurred in lung than in serum. In pulmonary 

total lipids the level of C20;4(u6 was no lower in EFAD than in the other 

groups. No reduction of synthesis of PGs of the two series would be 

expected. While the level of C18:2w6 was clearly lowered in lung in 

EFAD, the measured level of PGE^ was low enough in all groups to obscure 

any differences. Prostaglandin E^ may be low in lung due to rapid 

metabolism. 

That pulmonary prostacyclin should be elevated in EFA deficiency 
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is an unexpected finding. Very few measures of PGIg have been re

ported. Hornstra and Haddeman (1978) reported PGIg was decreased in 

aortic endothelium of EFA deficient animals. Hornstra and Hemker (1979) 

confirmed the reduction of prostacyclin synthesis in EFA deficiency. 

Although the present results appear to contradict these findings, 

attention to details of the diets used suggests complex factors 

entering into the comparisons. Hornstra and Haddeman (1978) compared 

EFA deficiency induced by a fat-free diet with a control diet con

taining fat. Thus, PGIg synthesis may have been reduced by level rather 

than composition of dietary fat. Hornstra and Hemker (1979) controlled 

level of fat by comparing rats fed 5% of calories as sunflower seed 

oil or hydrogenated coconut oil. Although level of fat was consistent, 

5% of calories is a low-fat diet. Dupont et (1980) showed that the 

change in rate of PG synthesis in response to change in C18;2to6 

intake was not a simple curve of positive slope. Increasing intake 

of linoleate from 0 to 2 percent of calories was associated with 

increased PG synthesis. Increasing linoleate intake from 2 to 7% 

of calories was associated with a drop in rate of PG synthesis. In

creases of linoleate intake over 7% of calories were again associated 

with increased rate of PG synthesis. Hornstra and Hemker's sunflower 

seed oil diet was 3% of calories as linoleate. Thus, they were feeding 

in the area of the PG synthesis curve that Dupont £t al, (1980) called 

"abnormally regulated." Evaluation of the decreased PGI^ synthesis 

in EFA deficiency is difficult. It is impossible to conclude from the 

data presented whether the elevated PGIg in our experiment was the 

result of an artifact, an effect of age or diet, or a combination of 
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several factors. 

Dietary cy-tocopheryl acetate was of no effect on PG synthesis in 

arterial blood or lung homogenate measured after ten minutes of incuba

tion. Lands et al. (1973) reported in vitro inhibition of PG synthesis 

by o-tocopherol, but Zenzer and Davis (1978) were unable to find inhibi

tion when using concentrations in the incubation medium exceeding those 

used by Lands et al. Either the inhibition occurred only at low 

concentration of ortocopherol or there was no genuine inhibition. In 

vivo work has not clarified the issue. Likoff et (1978) found that 

PG synthesis in chick spleen was inhibited by feeding a high-vitamin E 

diet. Our results suggest inhibition of PG synthesis in lung or serum 

cannot be attributed to excess dietary of-tocopherol intake. 

Many effects of excess vitamin E intake have suggested some derange

ment of PG metabolism — platelet aggregation (Nafstad 1974) , altered im

mune response (Corwin and Shloss 1979), protection from ozone toxicity 

(Menzel et 1978) — but very few measures of PGs in animals or man 

ingesting excess vitamin E have been reported. More information must 

be gathered to arrive at a definitive answer. Specific tissues, 

tissue fractions, species, ages, tocopherol isomers, doses, and 

individual prostaglandins must be considered. 

In theory crtocopherol could act to inhibit PG synthesis by 

altering the relative concentrations of fatty acid precursors. Of 

this we found no evidence in lung. Alpha-tocopherol affected neither 

fatty acid substrate nor PG product. In serum, while the amount of 

C20:4w6 was reduced relative to C18;2u)6 on the 50 mg/day vitamin E 

supplement, there was no concomitant reduction in PGE2 and PGF2a 
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relative to PGE^. As with growth depression, perhaps a longer experi

mental period would have allowed differences to appear. On the other 

hand, the experimental period may have been too long already, and any 

differences were moderated by adaptations over time. 

The PGE^/PGEg + ratio permits a single, comprehensive 

comparison of shifting balances among PGs of the one and two series. 

If a-tocopherol were to alter the balance of C18:2w6 and 020:4(1)6, then 

one might expect a similar shift in relative amounts of one and two 

series PGs. Alpha-tocopherol was of no significant effect on PG ratio 

in lung or serum. Dietary ffl-tocopherol appears to have no effect on PG 

synthesis mediated through effect on FA precursors. 

Comparison of reported values for PG synthesis is difficult. Method 

of analysis, diet, tissue, handling, reagent purity all influence 

results. Samuelsson et al. (1978) discussed the many sources of error 

in measurement of PGs. Prostaglandins occur in minute quantity such 

that slight variations in laboratory protocol may have large consequences. 

Prostaglandins are produced in response to mechanical stimulation. 

Thus, collection of the sample itself introduces possible error. In 

our laboratory different batches of antiserum and buffer have been 

shown to affect the assay results. Incubation of sample allows PG 

synthesis to proceed, and maximum levels are reached after different 

periods for different tissues. Incubation permits observation of PG 

synthetic rate and allows a measure of control over the error intro

duced in sample collection. Nonincubation of sample permits analysis 
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1 
of endogenous PG levels. Work is currently underway to examine and 

compare the levels of PCs measured before and after incubation in a 

variety of tissues. 

A comparison of measured values of PGs using the same RIA 

procedure appears in Table 26. In arterial serum our PGE^ values are 

lower than those of other investigators. This is easily explained 

by the differences in incubation procedure. Hwang et al. (1975) did 

not incubate, which should reduce PG values. However, they did not add 

aspirin to the sample to inhibit further PG synthesis. Prostaglandin 

levels in samples rise over time in the absence of a nonsteroidal anti

inflammatory drug. Hwang ai\d Kinsella (1978) incubated 60 minutes which 

permitted more PGE^ synthesis than our 10-minute incubation. Our 

serum PGEg value is lower than that of Hwang and Kinsella, again due 

to variation in length of incubation period. Our serum and lung PGEg 

levels are very similar to those of Mathias and Dupont's (1979) which 

were obtained under identical incubation conditions. Our serum and 

lung PGFg^^ values are much higher than any other reported. This is 

probably an effect of diet. Mathias and Dupont fed only 20% of calories 

as fat with a P.S ratio of 5.5. We fed 38% of calories as fat with a 

P.S ratio of 8.6. 

Diets high in PUFA have sometimes been shown to have harmful ef

fects. The same diets have been associated with elevated PG synthesis. 

In addition, vitamin E requirements rise with increasing dietary 

PUFA, ^nd vitamin E has inhibited PG synthesis in vitro. The hypothesis 

9 personal communication. 
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Table 26. Comparison of PG levels in rat serum and lung, determined 
by RIA 

Tissue Conditions Diet 

Hwang et al. 1975 Arterial 
serum 

Hwang & Kinsella 
1978 

Arterial 
serum 

No incubation 
No aspirin 

60-min incub. 

20% corn oil 

ll%cis 18:2(u6 

11% HCO 

Mathias & Dupont 
1979 

Work 
herein 

Lung 

Serum 

Lung 

Arterial 
serum 

10-min incub. 

10-min incub. 

10-min incub. 

10-min incub. 

20% calories as fat 
P/S 5.5 

20% calories as fat 
P/S 5.5 

20% SO by weight 

20% SO by weight 



www.manaraa.com

122 

PGE, PCE, PGF 
la 

1.57 + 0.23 
ng/ml 

5.69 ± 0.59 
ng/ml 
1.10 + 0.24 
ng/ml 

24.89 ± 4.35 
ng/ml 
2,19 ± 0.85 
ng/ml 

2.77 ± 0.42 
ng/ml 

0.91 ± 0.14 0.50 ± 0.08 
ng/mg ng/mg 

5.4 ± 1.5 3.8 + 0.6 
ng/109 platelets ng/lO® platelets 

0.08 + 0.01 0.28 + 0.02 7.61 + 0.94 
ng/mg ng/mg ng/mg 

0.69 + 0.15 5.50 + 0.99 14.23 + 2.61 
ng/ml ng/ml ng/ml 
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tested by the present investigation was that vitamin E, taken in adequate 

amounts, could counteract the effects of high PUFA diets by altering 

PG precursor fatty acids and PG synthesis. 

On the basis of the results reported herein, one cannot conclude 

that increasing intakes of of-tocopherol would ameliorate the deleterious 

effects due to high PUFA diets through modification of PG synthesis. 

No benefits from high vitamin E intake and some potential disadvantages 

were observed. Failure to support the hypothesis does not prove 

it to be false. The findings may be in error. The variables selected 

for observation and the methods used may be insensitive. Although the 

data fail to so indicate, real differences may exist. 
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SUMMARY 

The purpose of this work was to test the interrelationship of 

dietary vitamin E, dietary linoleic acid, and prostaglandin synthesis. 

Level of dietary PUFA has been associated with PG synthesis. In EFA 

deficiency PG synthesis was depressed, and on diets with P/S ratios 

over 5.5 PG synthesis was elevated. Vitamin E seemed to inhibit PG 

synthesis in vitro, and vitamin E deficiency in animals was associated 

with both depressed (Chan et 1979) and elevated (Hope et 1975) 

PG synthesis. As the initial step in PG synthesis is formation of a 

peroxide and as vitamin E is a recognized antioxidant, it has seemed 

reasonable to expect an influence of tocopherol on PG synthesis. Further

more, desaturation of linoleate to produce arachidonate (both PG pre

cursors) is an oxidative reaction which may be inhibited by vitamin E. 

Enhanced platelet aggregation — a function mediated at least in part 

by prostaglandins — occurs with diets either high in PUFA or deficient 

in vitamin E. Other effects of high PUFA diets have suggested PG in

volvement. Requirement for vitamin E is related to intake of PUFA. 

Thus, the hypothesis for this work was; an increase in dietary a-

tocopherol will modify the pulmonary and serum concentrations of pre

cursor fatty acids and will alter PG synthesis. Alpha-tocopherol will 

prevent conversion of linoleate to arachidonate and thereby alter the 

balance of PGs of the one and two series. 

In order to observe interrelationships of dietary crtocopherol and 

dietary linoleic acid, a pre-experimental EFA depletion period was used. 

In Experiment I male rats were fed a 20% HCO, 26% casein diet in order 
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to deplete tissue reserves of EFA. Periodic blood samples were taken 

for determination of T/T ratios, and growth was observed in order to 

monitor progress of EFA deficiency with time. In Experiments II and 

III the initial EFA depletion period (45 days) was followed by 45 

days of refeeding with 20% safflower oil and graded levels of dl-cr 

tocopheryl acetate. In Experiment II dl-crtocopheryl acetate was given 

in dietary supplements of 0, 1, 5, 10, or 20 mg/day. In Experiment III 

vitaminE was fed at 0, 1, or 50mg/day. AnEFAD group, killed at the end of the 

depletion period, was also included in Experiments II and III. Dependent 

variables observed were weight gain, food intake, hemolysis, pulmonary a-

tocopherol, pulmonary and serum fatty acid profiles, pulmonary PGE^, PGEg, 

PGFg^, PGI^, and serum PGE^, PGE^, and PGF^^. From these measures fatty acid 

ratios were developed to compare relative amounts of selected fatty acids. 

Essential FA depletion had marked effect on fatty acid profiles 

of serum and lung. Linoleate and arachidonate decreased while 

eicosatrienoate and oleate rose. The effect was more pronounced in 

serum than lung. Pulmonary tissue was resistant to, but not untouched 

by, the deficiency. While T/T ratios of serum were greater than 0.4 

within 45 days of beginning EFA depletion, lung T/T ratios were less 

than 0.20. However, lung showed greater reduction in linoleate than 

did serum. Thus, a C20:3W9/C20:4W6 + C18:2uj6 ratio was proposed that 

more accurately reflected the depletion of UJ6 fatty acids. Use of the 

T/T + D ratio showed the effects of EFA deficiency on lung and serum 

to be more similar than the T/T ratio had suggested. 

The effect of EFA depletion on PG synthesis was tissue and pro

stanoid specific, and no generalization was possible. In blood PGE^ 
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synthesis was depressed. In lung PGI^ synthesis was elevated. Serum 

PGEg, PGFg^, pulmonary PGE^, PGE^, and PGF^^ syntheses were not 

significantly altered. An explanation for the .general absence of 

depression of PG synthesis is obscure, particularly in view of the clearly 

reduced levels of PG precursor fatty acids and the elevated level of 

inhibitory eicosatrienoic acid. 

In general it was difficult to see any effect of progressive level 

of dietary vitamin E on any of the dependent variables. Growth was 

generally unchanged except for the appearance of a slight growth depres

sion after nearly 45 days of feeding 50 mg dl-crtocopheryl acetate/day. 

A very limited accumulation of o^tocopherol in lung was observed. No 

decrease in percent RBC hemolysis was associated with excessive vitamin 

E intakes. No alteration in FA profile of serum or lung was obvious 

with vitamin E intakes up to 20 mg daily. However, in the 50-T 

group the serum C20:4u)6/C18:2u)6 ratio was significantly lower than in 

the 1-T group. Such an effect was not observed in lung. This 

tissue difference was consonant with the accumulation of (^-tocopherol 

in the tissue. Lung had slight deposition of «-tocopherol in response 

to excessive dietary intakes while serum «-tocopherol is believed to 

reflect dietary vitamin E. 

Increased linoleate relative to arachidonate in serum of the 

• . 

50-T group supported the hypothesis that vitamin E would retard conver

sion of linoleate to arachidonate. The effect was not extended to PG 
I 

synthesis, however. No inhibition of synthesis of PGs of the two 

series relative to the one series was evident in blood or lung. 

In general the data do not support the hypothesis. Alpha-
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tocopherol was seen to have little effect on fatty acid pattern of 

serum and no effect on fatty acid profile of lung. In neither tissue 

was PG synthesis altered by level of intake of vitamin E. The evidence 

does not support a beneficial role for vitamin E in high-PUFA diets. 

On the other hand, the hypothesis is not proven false. Only 

selected variables were observed. An effect of dietary ortocopherol 

might be evident in other tissues or other functional measures. More

over, the procedures used in this work may be insensitive to genuine 

differences. Further efforts on the relationship of vitamin E, fatty 

acids, and prostaglandins are warranted. Although a zero-supplemented 

group was included in this research, no evidence of a genuine vitamin 

E deficiency appeared. In order to determine whether or not vitamin E 

actually has a part in regulation of fatty acid-prostaglandin metabolism, 

it is essential to produce a frank vitamin E deficiency and observe the 

functional consequences. The length of feeding may have masked dif

ferences. Thus, future work might feed animals a similar high-PUFA diet 

and graded levels of vitamin E for three different experimental periods — 

21 days, 45 days, and 90 days. The elevated prostacyclin aynthesis in 

EFA deficiency requires confirmation and explanation. The differing 

responses of prostanoids to the EFA deficient diet suggests a need to 

avoid generalizations and to observe each prostaglandin, thromboxane, 

and endoperoxide metabolite for its response to dietary manipulation. 
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Table 27. Ant1sera used for PG-RIA. Experiment III 

Antisera Batch Date 
Working 
dilution % binding 

Anti-PGE^ R 1005 10/17/73 1:3000 25% 

Anti-PGFga 1002 8/30/73 1:1000 36% 

Anti-PGEg 1010 10/14/73 1:4000 36% 

Anti-PGIg D-5 10/19/78 1:1000 62% 

Normal rabbit serum (MS) Pooled 6 10/25/76 1:400 2.6% 

Anti-rabbit gamma globulin Pooled 3 8/11/77 1:20 — 

Table 28. Phosphate buffered saline solution (PBS), O.OIM 

25 liters pH 7.0 

1. Dissolve in approximately 800 ml of distilled water (may require 
heating): 

a) 204.3 gm NaCl 
b) 9.85 gm NaHoPO^»H2O 
c) 26.7 gm NagHPO^ (anhydrous) or 49.5 gm of 7-hydrate 
d) 2.38 gm Merthlolate (EthylmercurithiosaHcylic Acid Sodium Salt) 

2. Dilute to 25 liters in large plastic carboy with distilled water. 

3. If pH la not within 9-7.1 range, adjust with 20% NaOH or 20% HCl. 

4. Store at 4°. 
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Table 29. Gelatin in phosphate buffer saline solution (PBS-gel), 0.1% 

1. Weigh 5 gms of Knox gelatin. 

2. Place approximately 600 ml of PBS in a 2-liter beaker. Add the gela
tin, stir and heat. When the solution is clear, place in a large 
plastic container. Dilute to 5 liters with PBS. Mix well. Store 
at 4°. 

Table 30. PBS-EDTA, 0.05M 

1. Weigh 18.612 gms disodium EDTA (Ethylenediamine Tetraacetic Acid, 

FW 372.24, ('io^l4^2^^2^8 ^^2^^ ^ beaker. 

2. Add approximately 800 ml PBS. Warm and stir until dissolved. 

3. Bring pH to 7.0 with 5N NaOH. 

4. Transfer to 1-liter volumetric flask. When at room temperature, di
lute to mark with PBS. Store at 4°. 
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Table 31. Representative protocol for PG-RIA 

P-l pi std. or Hi yl 
Tube No. PBS gel sample antiserum %-PG 

1 — — — 100 
2 — — — 100 
3 — — — 100 

4 500 — NRS:ARGG (1:1) 400 100 
5 500 — NRSiARGG (1:1) 400 100 
6 500 — NRS:ARGG (1:1) 400 100 

7 500 — Antiserum: ARGG (1:1) 400 100 
8 500 — Anti serum: ARGG (1:1) 400 100 
9 500 — Antiserum:ARGG (1:1) 400 100 

10 — 500 Antiserum:ARGG (1:1) 400 100 
11 250 250 Antiserum: ARGG (1:1) 400 100 
12 375 125 Antiserum:ARGG (1:1) 400 100 
13 437.5 62. 5 Antiserum: ARGG (1:1) 400 100 
14 468.8 31. 2 Antiserum; ARGG (1:1) 400 100 
15 484.4 15. 6 Antiserum; ARGG (1:1) 400 100 
16 492.2 7. 8 Anti serum ; ARGG (1:1) 400 100 
17 496.1 3. 9 Antiserum:ARGG (1:1) 400 100 
18 498.0 2. 0 Antiserum;ARGG (1:1) 400 100 
19 499.0 1. 0 Anti serum;ARGG (1:1) 400 100 

20 300 200 Antiserum:ARGG (1:1) 400 100 
21 300 200 Antiserum:ARGG (1:1) 400 100 
22 300 200 Antiserum:ARGG (1:1) 400 100 
23 300 200 Antiserum:ARGG (1:1) 400 100 

24 100 400 Antiserum: ARGG (1:1) 400 100 
25 100 400 Antiserum:ARGG (1:1) 400 100 

26 500 — Antiserum:ARGG (1:1) 400 100 
27 500 — Antiserum:ARGG (1:1) 400 100 
28 500 — Antiserum:ARGG (1:1) 400 100 

29 — 500 Antiserum;ARGG (1:1) 400 100 
30 250 250 Antiserum;ARGG (1:1) 400 100 
31 375 125 Ant1s erum:ARGG (1:1) 400 100 
32 437.5 62. 5 Antiserum:ARGG (1:1) 400 100 
33 468.8 31. 2 Antiserum:ARGG (1:1) 400 100 
34 484.4 15. 6 Ant1serum:ARGG (1:1) 400 100 
35 492.2 7. 8 Antiserum:ARGG (1:1) 400 100 
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Continued 

W'l til atd. or |il H-l 
PBS gel sample antiserum %-PG 

496.1 3.9 Antiserum:ARGG (1:1) 400 100 
498.0 2.0 Antiserum:ARGG (1:1) 400 100 
499.0 1.0 Anti serum : ARGG (1:1) 400 

Balanced incomplete block design. Experiment 11 

Treatments assigned 

0-T 1-T 5-T 10-T 

0-T 10-T 20-T EFAD 

1-T 5-T 20-T EFAD 

0-T 1-T 5-T 20-T 

0-T 1-T 10-T EFAD 

5-T 10-T 20-T EFAD 

0-T 1-T 5-T EFAD 

0-T 5-T 10-T 20-T 

1-T 10-T 20-T EFAD 

0-T 1-T 10-T 20-T 

0-T 5-T 20-T EFAD 

1-T 5-T 10-T EFAD 

0-T 1-T 20-T EFAD 

0-T 5-T 10-T EFAD 

1-T 5-T 10-T 20-T 



www.manaraa.com

151 

Table 33. Influence of genetic variability on dependent variables. 
Experiment II 

Variable® PR > F 

Initial weight .01 

Weight gain 
(days 46-61) .05 

FER 
(days 1-43) .01 

Serum FA 
(46th day) 

16:0 .05 
16:1 .05 
18:0 .05 
18:1 .05 
18:2u)6 ' .01 
20;3u)9 .01 

(9l8t day) 
16:0 .05 
18:0 .01 

Lung FA 
16:0 .01 
18:1 .01 
18;2u)6 .01 
20:3(1)9 .05 

®Only those variables e^ibiting a statistically significant 
genetic effect are included. 
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Table 34. Influence of genetic variability on dependent variables. 
Experiment III 

Variable* PR > F 

Initial weight .01 

Weight at end of depletion 
(45 days) .01 

Weight on 76th day .01 

Weight on 82nd day .05 

Serum FA 
(91st day) 

C20:3(1)9 .05 

Lung FA 
C16:0 .05 
C18:0 .05 
C18;l .05 
C18;2tu6 .05 
C20;4u)6 .05 

Serum FGs 
FGEg .05 

Lung FGs 
FGE, .05 
FGFg .01 
FGI .05 

*0nly those variables exhibiting a statistically significant 
genetic effect are included. 
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